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INTRODUCTION Dynamic Graph Convolutional Neural Network

 Challenge : T TETN] Dynamic Graph Convolution: ~ Learns how EEG
Increased dementia prevalence due to aging population necessitates ? \:{:’" 0 cEanngIs interact during tasks, adapting to
better evaluation methods and interventions for elderly. (N __ ik} éoanr\w/%llﬁ%gra]tée;\rgii.vatiOn. S S e

« Electroencephalogram (EEG) Potential AN O|[O]| softmax : : :

- - * et O T L meaningful features from EEG signals,
Offers a promising, portable, and affordable way to assess cognitive Dementia e O S introducing non - linearity for complex pattern
decline compared to traditional psychometric tools. \ 4 . O O recognition.
i Convolution :

« Novel Approach : O O ®) O ® o, Lo o O Dense & Softmax Layers:  Combines features and
This framework proposes Dynamic Graph Convolutional A o predicts the probability of cognitive decline.
Neural Network (DGCNN), Label Distribution Learning (LDL) (¥, = ngFL?rlgsCrrrwcc))Scjel_a\c/:?:ltlﬂaa?O:ﬁ ’ Felf?;t;iciités genstlng
on EEG measurements data to estimate memory decline. Graph Convolution Dense Layer P A Ao 4 4

« [Initial Results Kev Advantages
EEG has the potential to complement psychometric tools In Japan, about one in five eIderIy y J
for assessing memory loss. people aged 65 and over is Captures Spatial Relationships: The graph structure effectively represents the spatial connections between

 Clinical relevance - expected to develop dementia. different brain regions, allowing the model to learn how these regions interact.

Dynamic Learning:  The ability to adapt the graph connections during training enables the model to capture
the dynamic nature of brain activity.

Feature Extraction:  The combination of graph convolution and traditional convolution layers allows for
effective feature extraction from EEG data.

This framework could enhance early detection and
potentially aid in dementia diagnosis.
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The output layer is also treated as a label distribution,
This study aims to develop an Al driven EEG framework using DGCNN and LDL to predict memory decline with the input distribution using  Kullback - Leibler (KL)
and potentially complement dementia diagnostics in elderly population. divergence as loss to optimize the model. z
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EEG capture Al analysis Instant result
EEG dataset for cognitive Employ advanced machine learning Generate real -time feedback on Regrgssmn Analy5|§: e Do S 408 Maximum value y = argmax;p;
detection collected with techniques to analyze EEG patterns memory function, potentially aiding Predicted the severity of memory =l L
non - invasive devices. and predict cognitive decline. early detection for dementia. decline using continuous values. - Fxpected value 9§ = 2 Pl
Classification Analysis: AINL— S
Classified individuals into severity A0

in.dic.ator.groups for memory .decline.
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frequency bands hyperplane to predict continuous values. 5 . =0 ]
- Data selection: Resting state, eyes closed, rest - state EEG signals  from Max Planck Institute Leipzig * LDL-DGCNN (Our models): ‘- °2
Mind- Brain - Body open dataset (LEMON) 2!, This comparison aimed to assess the N o
- Preprocessing:  The data was down sampled to 100 Hz and filtered strengths and weaknesses of each model N B | oo. N B
. Feature extraction: Band differential entropy was calculated for each channel. in predicting memory decline. Mode Mode!

« Adjacency matrix: A fully connected adjacency matrix was created, indicating that all channels _ .
are considered to be connected. Classification

Health controls (119)

LABEL DISTRIBUTION LEARNING B

Severity Indicator:
==« Utilized the Force Choice Recognition (FCR) cutoff Bl to categorize
individuals as controls or potential memory decline cases.

L .: Performance Metrics:

ErENE T T e T s , , , £, 5 Sensitivity, Specificity, F1 - Score, Area Under the Curve (AUC)
oy AL Rl bl fcal el CVLT (California Verbal Learning Task) 3 N _ -
notebock | . . . =3 - The model demonstrated promising performance in classifying
w3 * » The task tests memory over time. Subjectslearna 16~ -word list ’ - "¢ dementia severity, achievingan F1 - score of 0.624 and an AUC of 0.71,
et ' ] 1 repeated five times, then encounter another list potentially | £ suggesting potential for further development and refinement for clinical
e interfering with their memory. I! 7 application.
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5. . . . « Adelayed free recall test occurs after 20 minutes, where they SubJects W|th [ — |
enveiope | again recall and categorize words from the first list. memory loss (73) 08 08
il « Finally, recognition memory is assessed by presenting a new

I — list and asking subjects to identify words from the original 16. " -
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PCA scores were derivgd from multiple cognitive battery test measures to create a O CVLT 4= Proactive Classification model result N AT L W o3 oo 86 8D
composite label reflecting general cognitive function. Interference
FCR = 12 CVLT_10: Short delay recalls (presented category cues)  Age group (Interfe rence from
— " s e P TS previously learned
5123; B information) _4~4 CONCLUSION
—Fe « Novel Framework :
7Y = 075 E O CVLT_ 9= number of This paper introduced a new framework for predicting memory decline using DGCNN with LDL,
8 ‘¢ correct recalls (short demonstrating its potential for dementia detection.
N E =k || = delay) 0 ~16
3 2 " « Moderate Accuracy
3 S O CVLT 10 = number of The model achieved moderate accuracy on the LEMON dataset, indicating the potential of EEG - based
NS ao- L o § correct recalls when approaches for early detection.
e | g category cues are « Limitations :
08 w0 (| = <8  presented (short Sample heterogeneity and lack of standardized clinical data may have impacted the model's
| delay) 0 ~16 f
o v = E ) performance.
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CVLT biplot of each component Bar graph of PC1 score distribution correct recalls after 20 Furt.h.er research W.I|| .fOC!JS on evalgatlng the framework with s.|mpler EEG devices ar)d exploring
. . . minutes (long delay additional dementia indicators. This could lead to more accessible and comprehensive tools for early
and subject scatter plots by subject age and CVLT score line : . ) :
recall) 0 ~16 dementia detection and intervention.
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LDL assigns to an instance a distribution over a set of labels ifipsiaioleg L, IO R SE001 FTICULYTAE

rather than a single label or multiple labels ,allowing us to
obtain useful information to improve model performance
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