Label Distribution Learning for Memory Decline:
A Deep Learning Approach Using EEG Analysis
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INTRODUCTION

Increased dementia prevalence due to aging population necessitates
better evaluation methods and interventions for elderly.
- Electroencephalogram (EEG) Potential:
Offers a promising, portable, and affordable way to assess cognitive Dementia
decline compared to traditional psychometric tools. \ 4

« Challenge:

* Novel Approach:

. . . O O O
This framework proposes Dynamic Graph Convolutional
Neural Network (DGCNN), Label Distribution Learning (LDL)

Q

on EEG measurements data to estimate memory decline.

« Initial Results:

EEG has the potential to complement psychometric tools In Japan, about one in five elderly

for assessing memory loss.
 Clinical relevance:

people aged 65 and over is
expected to develop dementia.

This framework could enhance early detection and
potentially aid in dementia diagnosis.

OBJECTIVES

This study aims to develop an Al driven EEG framework using DGCNN and LDL to predict memory decline
and potentially complement dementia diagnostics in elderly population.
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EEG capture Al analysis Instant result
EEG dataset for cognitive Employ advanced machine learning Generate real-time feedback on
detection collected with techniques to analyze EEG patterns  memory function, potentially aiding
non-invasive devices. and predict cognitive decline. early detection for dementia.

FEATURE AND GRAPH REPRESENTATION
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lllustration of the connections
among the 62 EEG channels [l

The weights of the adjacency

/ matrix is computed as follows:
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ij —

each node 0, otherwise

- Data selection: Resting state, eyes closed, rest-state EEG signals from Max Planck Institute Leipzig
Mind-Brain-Body open dataset (LEMON) (2],

« Preprocessing: The data was down sampled to 100 Hz and filtered

- Feature extraction: Band differential entropy was calculated for each channel.

- Adjacency matrix: A fully connected adjacency matrix was created, indicating that all channels
are considered to be connected.

LABEL DISTRIBUTION LEARNING

CVLT (California Verbal Learning Task)

« The task tests memory over time. Subjects learn a 16-word list

repeated five times, then encounter another list potentially

interfering with their memory.

« After immediate recall and categorization of the first list,

subjects perform various tasks (unspecified).

- A delayed free recall test occurs after 20 minutes, where they

again recall and categorize words from the first list.

 Finally, recognition memory is assessed by presenting a new
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CVLT cognitive battery test

list and asking subjects to identify words from the original 16.

PCA (Principal Component Analysis)

PCA scores were derived from multiple cognitive battery test measures to create a O CVLT_4= Proactive
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LDL (Label Distribution Learning)

LDL assigns to an instance a distribution over a set of labels
rather than a single label or multiple labels, allowing us to
obtain useful information to improve model performance
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The probability density function of the normal distribution is

performance validity testing (PVT)

used to generate the grand-truth distribution p. B pCl a pCl

Dynamic Graph Convolutional Neural Network
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N COT_VOIUUOH N© Dense & Softmax Layers: Combines features and
T S e O predicts the probability of cognitive decline.
N O 5-Fold Cross-Validation: Rigorous testing

—_— et ensures model accuracy and reliability on

Graph Convolution Dense Layer unseen data.
Key Advantages

Captures Spatial Relationships: The graph structure effectively represents the spatial connections between
different brain regions, allowing the model to learn how these regions interact.

Dynamic Learning: The ability to adapt the graph connections during training enables the model to capture
the dynamic nature of brain activity.

Feature Extraction: The combination of graph convolution and traditional convolution layers allows for
effective feature extraction from EEG data.
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Loss function $
The output layer is also treated as a label distribution,
with the input distribution using Kullback-Leibler (KL) l
divergence as loss to optimize the model.
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decline using continuous values. *
Classification Analysis:

Classified individuals into severity
indicator groups for memory decline.
Distribution Conversion Metrics:
Assessed model performance by

comparing predicted and actual label
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« LDL-DGCNN (Our models): _
This comparison aimed to assess the
strengths and weaknesses of each model
in predicting memory decline.
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Severity Indicator:
Utilized the Force Choice Recognition (FCR) cutoff [3] to categorize
individuals as controls or potential memory decline cases.
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CONCLUSION

This paper introduced a new framework for predicting memory decline using DGCNN with LDL,
demonstrating its potential for dementia detection.

- Moderate Accuracy:
The model achieved moderate accuracy on the LEMON dataset, indicating the potential of EEG-based
approaches for early detection.

 Limitations:
Sample heterogeneity and lack of standardized clinical data may have impacted the model's
performance.

« Future Directions:
Further research will focus on evaluating the framework with simpler EEG devices and exploring
additional dementia indicators. This could lead to more accessible and comprehensive tools for early
dementia detection and intervention.

The model demonstrated promising performance in classifying
dementia severity, achieving an Fl-score of 0.624 and an AUC of 0.71,
suggesting potential for further development and refinement for clinical
application.
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