

SoC Linux 道場【其ノ七】

ユーザ回路の追加と動作確認

Ver.13.1

2017年8月 Rev.2

ELSENA,Inc.

SoC Linux 道場【其ノ七】

ユーザ回路の追加と動作確認

<u>目次</u>

1. <u>はじめに</u>	
2. <u>ユーザ回路を追加</u>	4
2-1. カスタム・ハードウェアの 作成	4
2-2. LED の PWM 制御(コマンド・ライン)	14
2-3. CGI による PWM 制御	
改版履歴	

1. <u>はじめに</u>

前回の <u>SoC Linux</u> 道場 【其ノ六】 までの記事で、カスタム・ドライバを作成して実際に Helio ボードの I/O アクセスができるようになりました。

今回と次回は、Helio ボードの FPGA 上にモーターに対して PWM 制御するユーザ独自のハードウェア を追加して動作の確認を行います。

今回はまず、Helio ボードの LED の様子で PWM 制御できているかどうかを確かめます。

LED の PWM 制御は、スクリプト(コマンド・ライン)と CGI プログラムを使って行います。

尚、この資料の説明で使用している主な開発環境は以下の通りです。

【役 1.1】 この貝科の読明で使用しているエな開光煤現	【表 1.1】	この資料の説明で使用している主な開発環境
------------------------------	---------	----------------------

項番	項目	内容					
1	ホスト OS	Microsoft [®] Windows [®] 7 Professional sp1 日本語版(64 bit)					
2	ゲスト OS	Vine Linux 6.5 x86_64 この資料では、Linux [®] 開発環境として、Vine Linux ディストリビューションを使用します。					
		詳細については、 <u>SoC Linux 道場【其ノ弐】</u> を参照ください。					
3	仮想 OS 実行環境	OS を仮想的に実行するための環境です。 この説明では、「VMware Player for Windows」と呼ばれるフリーウェア・ソフトを使用しています。					
		詳細については、 <u>SoC Linux 道場 【其ノ弐】</u> を参照ください。					
4	クロス・コン	ターゲット(Helio)向けの実行イメージを生成するためのコンパイラです。					
	パイラ	この説明では、Linaro から提供されている 32-bit ARMv7 Cortex-A 向け Linux GNU クロス・ ツールチェーンを使用しています。					
		詳細については、 <u>SoC Linux 道場【其ノ参】</u> を参照ください。					
5	thttpd	組み込み機器では比較的使用されている Web サーバ・ソフトです。					
		「2-3.CGI による PWM 制御」を実行するために必要となります。					
		詳細については、 <u>SoC Linux 道場【其ノ四】</u> を参照ください。					
6	アルテラ	アルテラ FPGA のハードウェアを開発するためのツールです。					
	Quartus [®] II	本説明書では、Quartus II バージョン v13.1 を使用しています。					
		■ Quartus II 開発ソフトウェア					
		https://www.altera.co.jp/products/design-software/fpga-design/quartus-ii/overview.html					
7	Helio ボード	動作確認でターゲット・ボードとして使用する、 アルテラ Cyclone® V SoC を搭載したマクニカ Helio ボードです。					
		Helio には複数のリビジョンが存在しますが、この資料では、Rev1.2 または Rev1.3 を使用して 動作確認を行っています。					
		■ Helio ボード Rev1.2 <u>http://www.rocketboards.org/foswiki/Documentation/HelioResourcesForRev12</u>					
		■ Helio ボード Rev1.3 <u>http://www.rocketboards.org/foswiki/Documentation/HelioResourcesForRev13</u>					

3/26

2. ユーザ回路を追加

2-1. カスタム・ハードウェアの作成

カスタム・ドライバを作成して I/O アクセスができるようになりましたので、次にユーザ回路を追加します。 ここでは、時間的な制御を行う PWM 制御回路を追加します。

【注記】

<u>SoC Linux 道場【其ノ六】</u>の「2-2. Helio のリファレンス・デザインの入手と確認」(1)~(5) で説明した、 Quartus II のプロジェクト helio_ghrd_v13.1.zip がダウンロード済みで、任意のフォルダ(この例では、 C:¥Temp¥Helio の下)に解凍済みであることを前提としています。

(1) Verilog-HDL により作成した PWM 制御回路(ファイル名: MOTOR_CNT.v)を【リスト 2-1.1】に示 します。

別途記述済の MOTOR_CNT.v ファイルを用意していますので、これをダウンロードしてご利用ください。

このソース自体はそれほど難しいものではなく、主な機能としては以下の通りです。

- 方向を変える入力(DIR_INPUT)により MOTOR_OUT の 2 ビットのいずれかに PWM の制 御信号を出力する
- ② スピードは入力される値(SET_SW)によって 8 段階に切り替えられる


```
module MOTOR_CNT(input CLK, RESET, DIR_INPUT, input [2:0] SET_SW, output reg [1:0] MOTOR_OUT);
reg [20:0] tmp_cnt;
reg [21:0] set_signal;
reg DIR, EN;
parameter CNT_MAX = 2000000; // 20 ms
always @(posedge CLK or posedge RESET)
  if (RESET == 1'b1)
    tmp_cnt <= 12' h000;
  else if (tmp_cnt == (CNT_MAX - 1))
    tmp_cnt <= 12' h000;
  else
    tmp_cnt <= tmp_cnt + 12'h1;</pre>
always @(*)
begin
  case (SET_SW)
    3'b000 : set_signal = (CNT_MAX*1)/8;
    3'b001 : set_signal = (CNT_MAX*2)/8;
    3'b010 : set_signal = (CNT_MAX*3)/8;
    3'b011 : set_signal = (CNT_MAX*4)/8;
    3'b100 : set_signal = (CNT_MAX*5)/8;
    3'b101 : set_signal = (CNT_MAX*6)/8;
    3'b110 : set_signal = (CNT_MAX*7) /8;
    3'b111 : set_signal = (CNT_MAX*8)/8;
    default : set_signal = 0;
  endcase
end
always @(posedge CLK or posedge RESET)
  if (RESET == 1'b1)
    FN \le 1'b0:
  else
    begin
       if (tmp_cnt <= set_signal[20:0])</pre>
         EN <= 1'b1;
       else
         EN <= 1'b0;
    end
always @(posedge CLK or posedge RESET)
  if (RESET == 1'b1)
    MOTOR OUT \leq 2' b00;
  else
    begin
       if (DIR_INPUT == 1'b0)
         MOTOR\_OUT \le \{1' b0, EN\};
       else
         MOTOR\_OUT \le {EN, 1'b0};
    end
endmodule
```

【リスト 2-1.1】 PWM 制御回路(ファイル名: MOTOR_CNT.v)

(2) この Verilog-HDL ファイル(MOTOR_CNT.v)を Quartus II の helio_ghrd_v13 プロジェクト・フォル ダにコピーします。

🔾 🗢 📕 « Temp 🕨 Helio 🕨 hel	io_gh	ird_v13.1 🕨 👻 🗸	helio_ghrd_v13.	1の検索 👂
整理 ▼ 🔡 開く ▼ 新しいフォル	レダー			III 🔹 🚺 🔞
鷆 Temp	*	名前	更新日時	種類
鷆 Helio		\mu .asvs edit	2015/02/17 18:51	ファイル フォル…
🍌 helio_ghrd_v13.1		🔟 db	2015/02/17 18:51	ファイル フォル…
		퉬 hc_output	2015/02/17 18:51	ファイル フォル
	ш	퉬 hps_isw_handoff	2015/02/17 18:51	ファイル フォル…
MOTOR_CNT.v ファイルをコピー		鷆 ip	2015/02/17 18:51	ファイル フォル… 🗧
		퉬 output_files	2015/02/17 18:51	ファイル フォル…
		📄 c5_pin_model_dump.txt	2014/02/04 10:33	TXT ファイル
		📄 helio_ghrd.ipinfo	2014/01/17 16:06	IPINFO ファイル
		🚮 helio_ghrd.qpf	2014/01/17 16:06	QPF ファイル
		📄 helio_ghrd.qsf	2014/02/04 10:30	QSF ファイル
		📄 helio_ghrd.qws	2014/06/06 13:14	QWS ファイル
		helio_ghrd.sdc	2014/01/31 11:28	SDC ファイル
		helio_ghrd.sdc.bak	2014/01/31 11:28	BAK ファイル
		📄 helio_ghrd_description.txt	2014/01/17 16:07	TXT ファイル
		helia ahrd ton v	2014/02/04 10:30	Vファイル

【図 2-1.1】 MOTOR_CNT.v を helio_ghrd_v13 プロジェクト・フォルダにコピー

(3) PC のデスクトップにある Quartus II のアイコンをダブル・クリックして、Quartus II を起動します。

【図 2-1.2】 Quartus II の起動

(4) Quartus II の File メニュー ⇒ Open Project... を選択して、解凍しておいたリファレンス・デザイン内の helio_ghrd.qpf ファイルを選択し、[開く]をクリックしてプロジェクトを Open します。

File	Edit View Project	Assignments	Process		
	New	Ctrl+N			
2	Open	Ctrl+O			
	Close	Ctrl+F4			
阖	New Project Wizard				
	Open Project	Ctrl+J			

【図 2-1.3】File メニュー ⇒ Open Project... を選択

6	Open Project			×
(😋 🔵 🗢 📗 « Temp 🕨 H	elio 🖡 helio_ghrd_v13.1 🖡 🗸 😽	helio_ghrd_v13.10	検索 👂
	整理 ▼ 新しいフォルダー		:≡ ▼	
	鷆 Intel	名前	更新日時	種類
	iverilog MSOCache	Jays_edit	2014/05/31 16:03	ファイル フォ ファイル フォ
	PEMicro	hs_isw_handoff	2014/05/31 16:03	ファイルフォ
1	🎳 PerfLogs 퉲 Program Files	🄑 ip 强 output_files	2014/05/31 16:03 2014/05/31 16:03	ファイル フォ ファイル フォ
-	ProgramData	soc_system software	2014/05/31 16:03 2014/05/31 16:03	ファイル フォ ファイル フォ
	🍺 symbols 퉬 System Volume Inf	🛃 helio_ghrd.qpf	2014/01/17 16:06	QPF ファイル
	🕕 Temp			
	鷆 tmp			
L)]) training	•		Þ
	ファイル	$\underline{A}(\underline{N})$: helio_ghrd.qpf \bullet	Quartus II Project F 開<(<u>○</u>) ▼ =	ile (*.qp' ▼ ドヤンセル

【図 2-1.4】 リファレンス・デザインのプロジェクトのオープン

(5) helio_ghrd_top をダブル・クリックします。

💱 Quartus II	64-Bit - C:	/Temp/Hel	io/helio_g	hrd_v13.1/	'helio_g
<u>File E</u> dit <u>V</u> iev	v <u>P</u> roject	<u>A</u> ssignmen	ts P <u>r</u> oces:	ing <u>T</u> ools	<u>W</u> indo
i 🗋 💕 🖬 🧯	X 🗅	B 9	🔍 🕴 helio_	ghrd	
Project Navigator				Р	Ξ×
		Entity			
A Cyclone V: 50	SXFC6C6U2	3C8ES			
🗈 helio_ghr	d_top 🐴]			
		helio_ghrc	l_top をダブル	レ・クリック	
💩 Hierarchy	📄 Files	🧬 Desig	n Units	쏛 IP Compo	я ∢ 🕨

【図 2-1.5】 helio_ghrd_top をダブル・クリック

(6) トップ・ファイル (helio_ghrd_top.v) が開くので【リスト 2-1.2】のように MOTOR_CNT (赤色破線内) をインスタンスします。

module helio	o_ghrd_t	cop (
//HPS-UART			//2 21/ 11/	
Input		uart_rx,	//3.3V LV	//UARI Kecelve
ουτρυτ		uart_tx,	//3.3V	//UARI Iransmit
//HPS-I2C				
inout		i2c_scl_hps,	//3. 3V	//HPS I2C Clock output
inout		i2c_sda_hps,	//3. 3V	//HPS I2C Data Input/Output
//HPS-SPI-Bu	JS			
output		spi csn.	//3. 3V	//Slave Sel O
input		spi miso,	//3.3V	//Master Input
output		spi mosi.	//3. 3V	//Master Output
output		spi_sck,	//3. 3V	//Clock Output
	lach			
	10011	asni clk	//3 31/	//Clock
inout	[3.0]	deni io	//2 21/	//Data
output	[3.0]	qspi_10,	//3.3V	//Dala
output		qsp1_ss0,	//3.3V	// 301861
//HPS-SD-Car	rd-Flash			
output		sd_clk,	//3.3V	//
inout		sd_cmd,	//3.3V	//
inout	[3:0]	sd_dat,	//3. 3V	//
//HPS-USB-01	ГG			
input		usb_clk,	//3. 3V	//Clock
inout	[7:0]	usb_data,	//3.3V	//
input		usb_nxt,	//3. 3V	//
input		usb dir.	//3. 3V	//
output		usb_stp,	//3. 3V	//
//HPS-Ftherr	net1	0/100/1000		
	101 1	enet hos gtx clk	//3_3V	//Gb Ethernet Clock
output		enet hps mdc	//3.3V	//MDIO Clock (TR=0)
inout		enet hps_mdio	//3.3V	//MDIO Data (TR=0)
innut		enet hps rx clk	//3 3V	//Receive Data
innut		enet hns ry dy	//3 3V	//Receive Data Valid / Cont
input	[3.0]	enet hns rvd	//3 3V	//Receive Data
output	[0.0]	enet hns ty on	//3 31/	//Transmit Data Enable / Cont
output	[3.0]	enet has tyd	//3.3V	//Transmit Data LHADIE / UUIL
ουτρυτ	[3.0]	enet_nps_txu,	// 3. 3V	// IT ATISTITE DALA
//HPS-Trace-				
output		trace_clk_mic,	//3.3V	11
output	[7:0]	trace_data,	//3.3V	//
//HPS-DDR3-4	400Mx32-			
output	[14:0]	ddr3_hps_a,	//SSTL15	//Address
output	[2:0]	ddr3_hps_ba	//SSTL15	//Bank Address
output		ddr3 hps casn.	//SSTL15	//Column Address Strobe
output		ddr3 hps cke	//SSTL15	//Clock Enable
			,,	,,
(次ページへ)	売く)			

(前ページからの続き) //SSTL15 //Diff Clock - Neg ddr3 hps clk n. output //SSTL15 output ddr3_hps_clk_p, //Diff Clock - Pos output ddr3_hps_csn, //SSTL15 //Chip Select output [3:0] ddr3_hps_dm, //SSTL15 //Data Write Mask inout [31:0] ddr3_hps_dq, //SSTL15 //Data Bus inout [3:0] ddr3_hps_dqs_n, //SSTL15 //Diff Data Strobe - Neg inout [3:0] ddr3_hps_dqs_p, //SSTL15 //Diff Data Strobe - Pos ddr3_hps_odt, //SSTL15 ddr3_hps_rasn, //SSTL15 output //On-Die Termination Enable output //Row Address Strobe //Reset ddr3_hps_resetn, //SSTL15 output //SSTL15 //Write Enable output ddr3_hps_wen, //OCT_rzqin input ddr3_hps_rzq, //GPI0s--inout hps_gpio09, inout hps_gpio35, inout hps_gpio41, inout hps_gpio42, inout hps_gpio43, hps_gpio44, inout --// //----//----__// //FPGA-GPLL-CLK-----//X pins clk_100m_fpga, //2.5V //100 MHz (2nd copy to max) clk_50m_fpga, //2.5V //50MHz (2nd copy to max) clk_enet_fpga_p, //LVDS //125 MHz fixed input input input //FPGA-User-IO--input [3:0] user_dipsw_fpga, //2.5V //Dip SW pio output [3:0] user_led_fpga, //2.5V //LED pio
 output
 [3:0]
 MOTOR_OUT,
 //2.5V
 //LED pio

 input
 [2:0]
 user_pb_fpga
 //2.5V
 //Push
 //Push SW pio); 11-__// //-----Logic description-----// //-----// internal wires and registers declaration wire [2:0] fpga_debounced_buttons; wire hps_fpga_reset_n; wire [3:0] user_led_fpga; wire [1:0] motor_out_tmp; _____ soc_system u0 ((clk_50m_fpga), .clk clk (hps fpga reset n), .reset reset n .hps_0_h2f_reset_reset_n (hps_fpga_reset_n), (ddr3_hps_a), .memory_mem_a (次ページへ続く)

ALTIMA

🔥 ALTIMA

(前ページからの続き) .memory_mem_ba .memory_mem_ck .memory_mem_ck_n .memory_mem_cke .memory_mem_cs_n .memory_mem_ras_n .memory_mem_cas_n . memor y_mem_we_n .memory_mem_reset_n .memory_mem_dq .memory_mem_dqs .memory_mem_dqs_n .memory_mem_odt . memory_mem_dm .memory_oct_rzqin .hps_io_hps_io_emac1_inst_TX_CLK .hps_io_hps_io_emac1_inst_TXD0 .hps_io_hps_io_emac1_inst_TXD1 .hps_io_hps_io_emac1_inst_TXD2 .hps_io_hps_io_emac1_inst_TXD3 .hps_io_hps_io_emac1_inst_RXD0 .hps_io_hps_io_emac1_inst_MDIO .hps_io_hps_io_emac1_inst_MDC .hps_io_hps_io_emac1_inst_RX_CTL .hps_io_hps_io_emac1_inst_TX_CTL .hps_io_hps_io_emac1_inst_RX_CLK .hps_io_hps_io_emac1_inst_RXD1 .hps_io_hps_io_emac1_inst_RXD2 .hps_io_hps_io_emac1_inst_RXD3 .hps_io_hps_io_qspi_inst_IOO .hps_io_hps_io_qspi_inst_I01 .hps_io_hps_io_qspi_inst_IO2 .hps_io_hps_io_qspi_inst_IO3 .hps_io_hps_io_qspi_inst_SSO .hps_io_hps_io_qspi_inst_CLK .hps_io_hps_io_sdio_inst_CMD .hps_io_hps_io_sdio_inst_D0 .hps_io_hps_io_sdio_inst_D1 .hps_io_hps_io_sdio_inst_CLK .hps_io_hps_io_sdio_inst_D2 .hps_io_hps_io_sdio_inst_D3 .hps_io_hps_io_usb1_inst_D0 .hps_io_hps_io_usb1_inst_D1 .hps_io_hps_io_usb1_inst_D2 .hps_io_hps_io_usb1_inst_D3 .hps_io_hps_io_usb1_inst_D4 .hps_io_hps_io_usb1_inst_D5 .hps_io_hps_io_usb1_inst_D6 .hps_io_hps_io_usb1_inst_D7 .hps_io_hps_io_usb1_inst_CLK .hps_io_hps_io_usb1_inst_STP .hps io hps io usb1 inst DIR .hps_io_hps_io_usb1_inst_NXT

SoC Linux 道場【其ノ七】 ユーザ回路の追加と動作確認

ELSENA

(ddr3 hps ba). (ddr3_hps_clk_p), (ddr3_hps_clk_n), (ddr3_hps_cke), (ddr3_hps_csn), (ddr3_hps_rasn), (ddr3_hps_casn), (ddr3_hps_wen), (ddr3_hps_resetn), (ddr3_hps_dq), (ddr3_hps_dqs_p), (ddr3_hps_dqs_n), (ddr3_hps_odt), (ddr3_hps_dm), (ddr3_hps_rzq), (enet_hps_gtx_clk), (enet_hps_txd[0]), (enet_hps_txd[1]), (enet_hps_txd[2]), (enet_hps_txd[3]), (enet_hps_rxd[0]), (enet_hps_mdio), (enet_hps_mdc), (enet_hps_rx_dv), (enet_hps_tx_en), (enet_hps_rx_clk), (enet_hps_rxd[1]), (enet_hps_rxd[2]), (enet_hps_rxd[3]), (qspi_io[0]), (qspi_io[1]), (qspi_io[2]), (qspi_io[3]), (qspi_ss0), (qspi_clk), (sd_cmd), (sd_dat[0]), (sd_dat[1]), (sd_clk), (sd_dat[2]), (sd_dat[3]), (usb data[0]). (usb_data[1]), (usb_data[2]), (usb_data[3]), (usb_data[4]), (usb_data[5]), (usb_data[6]), (usb data[7]). (usb_clk), (usb_stp), (usb dir), (usb_nxt),

(次ページへ続く)

```
SoC Linux 道場【其ノ七】
                                                                           ユーザ回路の追加と動作確認
                                                                                                      ELSENA
ALTIMA
           (前ページからの続き)
                   .hps_io_hps_io_spim0_inst_CLK
                                                          (spi_sck),
                   .hps_io_hps_io_spim0_inst_MOSI
                                                          (spi_mosi),
                   .hps_io_hps_io_spim0_inst_MIS0
                                                          (spi_miso),
                   .hps_io_hps_io_spim0_inst_SSO
                                                          (spi_csn),
                   .hps_io_hps_io_uart0_inst_RX
                                                          (uart_rx),
                                                          (uart_tx),
                   .hps_io_hps_io_uart0_inst_TX
                   .hps_io_hps_io_i2c0_inst_SDA
                                                          (i2c_sda_hps),
                   .hps_io_hps_io_i2c0_inst_SCL
                                                          (i2c_scl_hps),
                   .hps_io_hps_io_trace_inst_CLK
                                                          (trace_clk_mic),
                                                          (trace_data[0]),
                   .hps_io_hps_io_trace_inst_D0
                                                          (trace_data[1]),
                   .hps_io_hps_io_trace_inst_D1
                   .hps_io_hps_io_trace_inst_D2
                                                          (trace_data[2]),
                   .hps_io_hps_io_trace_inst_D3
                                                          (trace_data[3]),
                                                          (trace_data[4]),
                   .hps_io_hps_io_trace_inst_D4
                   .hps_io_hps_io_trace_inst_D5
                                                          (trace_data[5]),
                                                          (trace_data[6]),
                   .hps_io_hps_io_trace_inst_D6
                                                          (trace_data[7]),
                   .hps_io_hps_io_trace_inst_D7
                   .hps_io_hps_io_gpio_inst_GPI009
                                                          (hps_gpio09),
                   .hps_io_hps_io_gpio_inst_GPI035
                                                          (hps_gpio35),
                   .hps_io_hps_io_gpio_inst_GPI041
                                                          (hps_gpio41),
                                                          (hps_gpio42),
                   .hps_io_hps_io_gpio_inst_GPI042
                   .hps_io_hps_io_gpio_inst_GPI043
                                                          (hps_gpio43),
                   .hps_io_hps_io_gpio_inst_GPI044
                                                          (hps_gpio44),
                   .led_pio_external_connection_export
                                                          (user_led_fpga),
                   .dipsw_pio_external_connection_export
                                                          (user_dipsw_fpga),
                   .button_pio_external_connection_export (fpga_debounced_buttons)
               );
              // Debounce logic to clean out glitches within 1ms
           debounce debounce_inst (
             .clk
                                                    (clk_50m_fpga),
             . reset_n
                                                    (hps_fpga_reset_n),
             .data_in
                                                    (user_pb_fpga),
             .data_out
                                                    (fpga_debounced_buttons)
           );
             //defparam debounce_inst.WIDTH = 2;
             defparam debounce_inst.WIDTH = 3;
             defparam debounce_inst. POLARITY = "LOW";
             defparam debounce_inst.TIMEOUT = 50000;
                                                                 // at 50Mhz this is a debounce time of 1ms
             defparam debounce_inst.TIMEOUT_WIDTH = 16;
                                                                 // ceil(log2(TIMEOUT))
           MOTOR CNT u1(
             .CLK(clk_50m_fpga),
             . RESET (~user_pb_fpga[0]),
             .DIR_INPUT(~user_led_fpga[3]),
             .SET_SW(~user_led_fpga[2:0]),
             . MOTOR_OUT (motor_out_tmp)
             );
           assign MOTOR_OUT = ~{user_led_fpga[3:2], motor_out_tmp};
                              _____
           endmodule
```

【リスト 2-1.2】トップ・ファイルへの MOTOR_CNT のインスタンス(helio_ghrd_top.v)

(7) インスタンスが終わったら File メニュー ⇒ Save でセーブします。

(8) MOTOR_CNT の接続部分のブロック図としては下図のようになります。

 (9) ユーザ回路の変更に伴い、出力名を user_led_fpga から MOTOR_OUT に変更したので、ピン・ア サインを【リスト 2-1.3】のように変更します(helio_ghrd.qsf ファイルをエディタで開いて直接変更しま す)。

変更が終わったらファイルをセーブして、エディタを終了します。

【リスト 2-1.3】 ピン・アサインの変更(helio_ghrd.qsf の抜粋)

(10) Processing メニュー ⇒ Start Compilation または
 ボタンをクリックして、コンパイルを実行します。

/}	nelio_	_ghrd_v13.1/helio_ghrd - helio_ghrd	1	
	Proce	essing Tools Window Help 💎		_
	•	Stop Processing	Ctrl+Shift+C) 🧇 💿 🕨 🧭
ſ		Start Compilation	Ctrl+L	helio_ghrd_top.v
		Analyze Current File		0 10 10 0
_		Start	•	
		Update Memory Initialization File		ce logic to cl
	4	Compilation Report	Ctrl+R	ince_inst (
	9	Dynamic Synthesis Report		
h	4	PowerPlay Power Analyzer Tool		
-	V	SSN Analyzer Tool		debounce_inst.
-		Receive Compilation Status Notifications		pounce_inst.WI
	_	195	defparam d	<pre>_Dounce_inst.PO ebounce_inst.TI</pre>

【図 2-1.8】コンパイルの実行

(11) コンパイルが成功すると、helio_ghrd_v13 プロジェクトの output_files フォルダに新しい
 helio_ghrd.sof ファイルが生成されているはずです。これを後程 Helio にダウンロードします。

```
      Type
      ID
      Message

      (1)
      332101
      Design is fully constrained for setup requirements

      (1)
      332101
      Design is fully constrained for hold requirements

      (1)
      Quartus II 64-Bit TimeQuest Timing Analyzer was successful. 0 errors, 14 warnings

      (1)
      293000
      Quartus II Full Compilation was successful. 0 errors, 160 warnings
```

【図 2-1.9】コンパイルの成功

2-2. LED の PWM 制御(コマンド・ライン)

ここまで準備ができたら変更したデザインを Quartus II でコンパイルし、Programmer で生成された sof ファイルを Helio にダウンロードして、コマンド・ラインによる PWM 制御を確認します。

(1) Helio とホスト PC が下図のように接続されていることを確認します。

【図 2-2.1】PC と Helio の接続図(全体)

- ① Helio の UART コネクタとホスト PC の USB ポートをミニ USB ケーブルで接続します。
- ② Helio の USB-BlasterTM II コネクタとホスト PC の USB ポートをミニ USB ケーブルで接続します。
- ③ Helio の ETHERNET コネクタとホスト PC のイーサーネット・ポートをイーサーネット・ケーブ ルで接続します。
- ④ Helio の microSD カード・スロットに、SoC Linux 道場【其ノ六】で使用した Helio 用 Linux の microSD カードを取り付けます。
- (2) Helio の 電源を入れて Linux が起動したら、ターゲット側(Helio) で以下のように root でログイ ンして、udhcpc コマンドを実行して、DHCP サーバから Helio に IP アドレスが付与されるようにし ます(下記の例では、192.168.1.238 が付与されています)。

【注記】

<u>SoC Linux</u> 道場【其ノ弐】で説明した DHCP サーバが設定されていて、使用できることを前提としています。

```
socfpga login: root
root@socfpga:~# udhcpc
udhcpc (v1.20.2) started
Sending discover...
Sending select for 192.168.1.238...
Lease of 192.168.1.238 obtained, lease time 21600
/etc/udhcpc.d/50default: Adding DNS 192.168.1.1
```


(3) PC のデスクトップにある Quartus II のアイコンをダブル・クリックして、Quartus II を起動します。
 ※ 既に Quartus II が起動済みである場合は、この手順はスキップしてください。

【図 2-2.2】Quartus II の起動

 (4) Quartus II の Tools メニュー ⇒ Programmer を選択、または Programmer アイコン [▶]をクリック して Programmer を起動します。

💱 Quartus II 64-Bit		
File Edit View Project Assignments Processing	Tool	Window Help 🐬
		Run Simulation Tool
Project Navigator	ς.	Launch Simulation Library Compiler
Compilation Hierarchy	1	Launch Design Space Explorer
	Ō	TimeQuest Timing Analyzer
		Advisors •
		Chip Planner
	٠	Design Partition Planner
		Netlist Viewers
		SignalTap II Logic Analyzer
		In-System Memory Content Editor
A Hierarchy E Files P Design Units		Logic Analyzer Interface Editor
Tasks	01	In-System Sources and Probes Editor
Flow: HyperFlex Compilation		SignalProbe Pins
Task	9	Programmer
TUSK	4 00.	

【図 2-2.3】Programmer の起動

(5) Programmer 内にある [Hardware Setup...] ボタンをクリックし、Currently selected hardware のプルダ ウンリストから Helio を選択します。選択したら [Close] をクリックします。

Quartus II 64-Bit P File Edit View Proc	P rogran essing	nmer - [Chain1.cd Tools Window	f] Help 🛡			Search al
Hardware Setup	No Har o allow t	dware background programm	Mode: ning (for MAX II and N	JTAG IAX V devices)	T	Progress:
		File	Device	Checksur	n Usercode	Program/ Verify Bl
Start	- <u>3</u>	Hardware Setup				
Stop	Ĩ	Hardware Settings	JTAG Settings			
Auto Detect		Select a programming	nardware setup to u	ise when prog	ramming devices. 1	This programming
🔀 Delete		hardware setup appl	ies only to the curren	t programmer	window.	
Add File		Currently selected ha	ardware: Helio [US	8-1]		Y
🕍 Change File			, items			
	•	Hardware		Server	Port	Add Hardware
Jave File		Helio		Local	USB-1	Remove Hardware
Add Device						
ի ^պ ս Սթ						
↓ [™] Down						
						Close
🎽 🔝 🙆 🔼						.44

【図 2-2.4】 Hardware Setup

(6) [Auto Detect] ボタンをクリックし、ボード上の JTAG チェインに接続されている FPGA を検出します。
 Select Device ウィンドウが現れたら "5CSXFC6C6ES"を選択し [OK] をクリックします。

【図 2-2.5】デバイスの選択

ALTIMA

【図 2-2.6】 [Change File] をクリック

 (8) [Select New Programming File] ダイアログ・ボックスで、ダウンロード保存して解凍しておいた helio_ghrd_v13.1 フォルダの下の output_files フォルダをブラウズして、helio_ghrd.sof を選択し [Open] します。

Select New Programming File
Look in: 🛛 D:\Temp\Helio\helio_ghrd_v13.1\output_files 🔹 🗸 🔾 💽 📑 📰 🔳
My Computer helio_ghrd.jic 11149
File <u>n</u> ame: helio_ghrd.sof
Files of type: Programming Files (*.sof *.pof *.jam *.jbc *.ekp *.jic) Cancel

【図 2-2.7】 プログラミング・ファイルの選択

(9) Program/Configure にチェックを入れた後、[Start] ボタンをクリックしてコンフィギュレーションを行います。Progress バーに「100% (Successful)」と表示されればプログラミングは完了です。

🖖 Programmer - D:/Temp/Helio/helio_ghrd_v13.1/helio_ghrd - helio_ghrd - [output_files/helio_ghrd.cdf]* 🛛 💼 💼 📧								
File Edit View Processing Tools Window Help 🗟 Search altera.com						om 🚯		
Hardware Setup Helio [USB-1] Mode: JTAG Progress: 100% (Successful) Enable real-time ISP to allow background programming (for MAX II and MAX V devices) V devices)								
Start	File	Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine
Stop	<none></none>	SOCVHPS	00000000	<none></none>				
	output_files/helio_ghrd.sof	5CSXFC6C6U23C8E5	0263F018	0263F018				
Auto Detect								
🗙 Delete	•							+

【図 2-2.8】 リファレンス・デザインによるコンフィギュレーションの実行

(10) 次に ターゲット側(Helio)から PWM 制御のための信号を <u>SoC Linux 道場 【其ノ六】</u>の「2-5. デバイス・ファイルの作成とドライバ・アクセス」の (3) で作成したデバイス・ファイル /home/root/led0~3 に送ります。

【リスト 2-2.1】のようなスクリプトを作成しておくと便利です。

別途記述済の pwm_set.sh スクリプト・ファイルを用意しましたので、これをダウンロードして SoC Linux 道場【其ノ弐】で説明した Samba サーバ経由で、Windows から Vine Linux のホー ム・ディレクトリ (/home/tori) にコピーしてご利用ください。

【注記】

Linux 上で使用する pwm_set.sh スクリプト・ファイルは、文字コードを「UTF-8」、改行コードを 「LF のみ」で作成する必要があります。別途記述済の pwm_set.sh スクリプト・ファイルは、文字コ ード「UTF-8」、改行コード「LF のみ」で作成してありますが、ご自身で pwm_set.sh スクリプト・フ ァイルを作成する場合は注意してください。

```
#!/bin/sh
```

echo "ARG Value = \$1" LED0=`expr \$1 ¥% 2` LED1=`expr \$1 ¥/ 2 ¥% 2` LED2=`expr \$1 ¥/ 4 ¥% 2` LED3=`expr \$1 ¥/ 8 ¥% 2` echo \$LED0 > ~/Ied0 echo \$LED1 > ~/Ied1 echo \$LED2 > ~/Ied2 echo \$LED3 > ~/Ied3 echo "LED0 = \$LED0" echo "LED1 = \$LED1" echo "LED2 = \$LED2" echo "LED3 = \$LED3"

【リスト 2-2.1】 PWM 制御のスクリプト(pwm set.sh)

(11) 上記の pwm_set.sh スクリプト・ファイルを NFS 経由で Helio 上に運ぶための準備として、ターゲット側(Helio)からホスト側(Vine Linux)のマウント先 /opt/Helio に pwm_set.sh をコピーしておきます。

<mark>ホスト側(Vine Linux)</mark>から以下のコマンドを実行します。

[tori@Vine65 ~]\$ cp pwm_set.sh /opt/Helio

(12) Helio の SD カードの /bin の下にもともと入っている busybox を使って、ホスト側(Vine Linux)の /opt/Helio を /mount_dir にマウントします。

これにより、上記 (11) で /opt/Helio にコピーした pwm_set.sh を Helio の /mount_dir から直接ア クセスできるようになります。

また、後で説明する「2-3. CGI による PWM 制御」を実行するためには、<u>SoC Linux 道場 【其ノ四】</u> で説明した thttpd という Web サーバ・ソフトを使用します。

<u>SoC Linux</u> 道場【其ノ四】の「2-2. thttpd のクロス・コンパイルとインストール」を一通り実施している 場合は、thttpd のファイル(thttpd、thttpd.conf、index.html、printenv.cgi)が /opt/Helio に既にコピーさ れているはずなので、これらのファイルも Helio の /mount_dir から直接アクセスできるようになりま す。

<mark>ターゲット側(Helio)</mark> で以下のコマンドを実行します。

【注記】

※1. SoC Linux 道場【其ノ弐】で説明した、NFS サーバが使用できることを前提としています。

※2. thttpd のファイル(thttpd、thttpd.conf、index.html、printenv.cgi)が、ホスト側(Vine Linux)の /opt/Helio ディレクトリにコピーされていない場合は、SoC Linux 道場【其ノ四】の「2-2. thttpd のクロス・コンパイルとインストール」の 20 ページ (8) まで実行して thttpd のファイルを /opt/Helio ディレクトリにコピーしてから、これ以降のステップを実行してください。

root@socfpga:~# busybox mount -t nfs -o nolock 192.168.1.2:/opt/Helio /mount_dir root@socfpga:~# cp /mount_dir/pwm_set.sh /home/root/altera/

(13) ターゲット側(Helio) で以下の insmod コマンドを実行して、SoC Linux 道場【其ノ六】ですでに 作成してマウントされている helio gpio.ko ドライバをロードします。

root@socfpga:~# insmod /mount_dir/helio_gpio.ko
Device registered successfully, Major No. = 252

(14) ターゲット側(Helio) で以下のように実行します。

root@socfpga:~# cd /home/root/altera/ 🗲	この例では /home/root/altera の下に スクリプト・ファイルが置かれているものとする
<pre>root@socfpga:~/altera# ./pwm_set.sh 0 root@socfpga:~/altera# ./pwm_set.sh 1 root@socfpga:~/altera# ./pwm_set.sh 2 root@socfpga:~/altera# ./pwm_set.sh 3 root@socfpga:~/altera# ./pwm_set.sh 4 post@socfpga: (altera# ./pwm_set.sh 5)</pre>	LEDO LED1 LED2 LED3
<pre>root@socfpga:~/altera# ./pwm_set.sh 6 root@socfpga:~/altera# ./pwm_set.sh 7 root@socfpga:~/altera# ./pwm_set.sh 7</pre>	数字が大きくなるに従って 正転を示す 点滅が速くなる
<pre>root@socfpga:~/altera# ./pwm_set.sh 8 root@socfpga:~/altera# ./pwm_set.sh 9 root@socfpga:~/altera# ./pwm_set.sh 10 root@socfpga:~/altera# ./pwm_set.sh 11 root@socfpga:~/altera# ./pwm_set.sh 12 root@socfpga:~/altera# ./pwm_set.sh 13 root@socfpga:~/altera# ./pwm_set.sh 14 root@socfpga:~/altera# ./pwm_set.sh 15 root@socfpga:~/altera# cd</pre>	LED0 LED1 LED2 LED3 へ 数字が大きくなるに従って 点滅が速くなる 逆転を示す
root@socfpga:~#	

【図 2-2.9】 PWM 制御のスクリプトを使用した LED の状態

- ①「**正転時」**(数値 0~7 を与えた場合)は、LED0 が点滅し、LED1 は消灯し続けます。
- ②「逆転時」(数値 8~15 を与えた場合)は、LED1 が点滅し、LED0 は消灯し続けます。
- ③ LED3 は回転方向を示しており、「正転時」は点灯し、「逆転時」は消灯します。
- ④ LED2 には user_led_fpga[2] (ビット 2)の信号がそのまま入っているので、与える数値が、
 - · 0~3 または 8~11 の場合は 点灯
 - · 4~7 または 12~15 の場合は 消灯

します。

もしうまく行かない場合には、HDL のソースやピン・アサインが正確に行われているか、また qsf ファイ ルなどの中身をよくチェックしてみましょう。

2-3. CGI による PWM 制御

スクリプトでコントロールできたので、今度は CGI プログラムを作成して、ブラウザからコントロールしてみ ます。

(1) CGI プログラムのソース・コード(ファイル名: pwm_cnt.c)を次の【リスト 2-3.1】に示します。

ソース・コードは Leafpad エディタ等を使用して一から書くこともできますが、大変なので別途記述済の pwm_cnt.c ソース・コードを用意しました。

この記述済 pwm_cnt.c ソース・コードをダウンロードして、<u>SoC Linux 道場【其ノ弐】</u>で説明した Samba サーバ経由で、Windows から Vine Linux のホーム・ディレクトリ(/home/tori)にコピーしてご 利用ください。

```
#include <stdio.h>
 #include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
 int main(int argc, char *argv[]) {
         int i, j, last_result0, last_result1;
         int led_fd[4];
         char *env;
 static char *LED[] = {
         "/home/root/led0",
         "/home/root/led1",
         "/home/root/led2",
         "/home/root/led3"
};
 static char *MESO[] = {
         "Pos".
         "Neg"
};
 static char *MES1[] = {
         "Speed0",
         "Speed1",
         "Speed2",
         "Speed3".
         "Speed4",
         "Speed5",
         "Speed6"
          "Speed7"
};
         printf("Content-type: text/html¥n¥n");
         printf("<html><body><big>Motor control CGI sample</big>¥n");
         printf("<form action=\function_result of the printf(") of the printf("
         env = (char *)getenv("QUERY STRING") ;
         if (env == NULL) env = "Pos Speed0";
 //printf("%s¥n", env);
 (次ページへ続く)
```

```
ALTIMA
                                       (前ページからの続き)
                                              for (i = 0; i \le 3; i++) {
                                                     if ((led_fd[i] = open(LED[i], 0_WRONLY)) == -1) {
                                                                     perror("open:");
                                                                    return 1;
                                                     }
                                             }
                                              for (j = 0; j \le 1; j++) {
                                                     printf("%s<input type=¥"radio¥" name=¥"Motor_DIR¥" value=¥"%s¥"", MESO[j], MESO[j]);
                                                     if (strstr(env, MESO[j])) {
                                                             printf(" checked>¥n");
                                                             last_result0 = j;
                                                     }
                                                     else {
                                                             printf(">¥n");
                                                     }
                                              }
                                              printf("<BR>¥n");
                                             for (j = 0; j <= 7; j++) {
                                                     printf("%s<input type=¥"radio¥" name=¥"Motor_SPEED¥" value=¥"%s¥"", MES1[j], MES1[j]);</pre>
                                                     if (strstr(env, MES1[j])) {
                                                             printf(" checked>¥n");
                                                              last_result1 = j;
                                                     }
                                                     else {
                                                             printf(">¥n");
                                                     }
                                              }
                                              printf("<BR>¥n");
                                              if (last_result0 == 1)
                                                     write (led_fd[3], "1", 1);
                                              else
                                                     write (led_fd[3], "0", 1);
                                              for (i = 0; i \le 2; i++) {
                                                     if (last_result1 & (0x01 \ll i))
                                                             write (led_fd[i], "1", 1);
                                                     else
                                                             write (led_fd[i], "0", 1);
                                              }
                                              printf("<input type=\function submit\function value=\function submit\function submit\function value=\function submit\function submit\function value=\function submit\function value=\function submit\function value=\function submit\function value=\function submit\function value=\function submit\function value=\function submit\function submit\function value=\function submit\function value=\function submit\function value=\function submit\function value=\function submit\function value=\function submit\function value=\function value=\func
                                              printf("</form></body></html>¥n");
                                              return 0;
```

【リスト 2-3.1】 PWM 制御 CGI プログラム(ファイル名: pwm_cnt.c)

(2) ホスト側(Vine Linux) から以下のコマンドで、pwm_cnt.c のクロス・コンパイルを実行します。

[tori@Vine65 ~]\$ arm-linux-gnueabihf-gcc pwm_cnt.c -o pwm_cnt.cgi

}

(3) pwm_cnt.cgi が生成されているはずなので、それを NFS 経由で Helio 上に運ぶための準備として、 ターゲット側(Helio)からホスト側(Vine Linux)のマウント先 /opt/Helio に pwm_cnt.cgi をコピーし ておきます。

<mark>ホスト側(Vine Linux)</mark>から以下のコマンドを実行します。

[tori@Vine65 ~]\$ cp pwm_cnt.cgi /opt/Helio/

- (4) Helio の SD カードの /bin の下にもともと入っている busybox を使って、ホスト側(Vine Linux)の /opt/Helio を /mount_dir にマウントします。 ターゲット側(Helio) で以下のコマンドを実行します。 これにより、上記 (3) で /opt/Helio にコピーした pwm_cnt.cgi を Helio の /mount_dir から直接ア クセスできるようになります。
 - ※ 前出の「2-2. LED の PWM 制御(コマンド・ライン)」の (12) で、すでにマウント済みであれば、 この手順はスキップしてください。

【注記】

SoC Linux 道場【其ノ弐】で説明した、NFS サーバが使用できることを前提としています。

root@socfpga:~# busybox mount -t nfs -o nolock 192.168.1.2:/opt/Helio /mount_dir

- (5) ターゲット側(Helio) で thttpd の設定を行います。まず NFS 経由で見えている4つのファイル (thttpd、thttpd.conf、index.html、printenv.cgi)を root ディレクトリにコピーしておきます。
 - ※ <u>SoC Linux 道場【其ノ六】</u>の「2-6. LED の CGI 制御」(5) で、すでにコピー済みであれば、この手順はスキップしてください。

root@socfpga:~# cp /mount_dir/thttpd . ← 最後の「.」(ドット)を忘れないこと root@socfpga:~# cp /mount_dir/thttpd.conf . root@socfpga:~# cp /mount_dir/index.html . root@socfpga:~# cp /mount_dir/printenv.cgi .

(6) ターゲット側(Helio) で以下のように必要なユーザやファイルを作成します。

※ <u>SoC Linux 道場【其ノ六】</u>の「2-6. LED の CGI 制御」(6) で、すでに実施済みであれば、この 手順はスキップしてください。

 (7) ターゲット側(Helio) で pwm_cnt.cgi ファイルを /home/httpd/html/cgi-bin ディレクトリヘコピーして から、chmod コマンドで実行権限を与えます。

root@socfpga:~# cp /mount_dir/pwm_cnt.cgi /home/httpd/html/cgi-bin root@socfpga:~# chmod 755 /home/httpd/html/cgi-bin/pwm_cnt.cgi

(8) ターゲット側(Helio) で thttpd を以下のコマンドで起動します。その後、ps コマンドでプロセスが 起動していることを確認します。

root@socfpga:~# ./thttpd -C thttpd.conf <				thttpd を起動		
root@socfpga:	~# ps		L			
PID USER	VSZ STAT	COMMAND				
1 root	1312 S	init [5]				
2 root	O SW	[kthreadd]				
3 root	O SW	[ksoftirqd/0]				
(途中省略)						
704 httpd 705 root	2388 S	./thttpd -C thttpd.conf	←	プロセスが起動	していることを確認	
root@socfpga:~#						

ELSENA

(9) **ホスト側(Vine Linux)** で Web ブラウザ(Firefox)を起動します。

【図 2-3.1】Web ブラウザ(Fire Fox)を起動

(10) 例えば DHCP サーバから付与された Helio の IP アドレスが「192.168.1.238」の場合は、

http://192.168.1.238:8080/cgi-bin/pwm_cnt.cgi

をURL に指定して、下図のようなブラウザが現れて PWM 制御できるようになります。

'Pos' にチェックを入れると「正転」、'Neg' にチェックを入れると「逆転」になります。また各 'Speed' にチェックを入れると、数字が大きくなるに従って LED の点滅速度が速くなります。[submit] ボタンを クリックすると設定した PWM 制御を実行します。

【図 2-3.2】 PWM 制御 CGI

改版履歴

Revision	年月	概要
1	2015年3月	新規作成
1.1	2015 年 3 月	アルテラ社の Web サイトのリニューアルに伴う URL 変更
2	2017年8月	 Sourcery CodeBench Lite Edition for ARM GNU/Linux の配布終了に 伴い、クロス・コンパイル環境として Linaro Toolchain を使用する説明 に変更 ゲスト OS を Vine Linux 6.2.1 i686 から Vine Linux 6.5 x86_64 に変 更

Linux は、Linus Torvalds 氏の日本およびその他の国における登録商標または商標です。

 免責およびご利用上の注意

 弊社より資料を入手されましたお客様におかれましては、下記の使用上の注意を一読いただいた上でご使用ください。

 1. 本資料は非売品です。許可無く転売することや無断複製することを禁じます。

 2. 本資料は予告なく変更することがあります。

 3. 本資料の作成には万全を期していますが、万一ご不明な点や誤り、記載漏れなどお気づきの点がありましたら、本資料を入手されました下記代理店までご一報いただければ幸いです。 株式会社マクニカ アルティマ カンパニー https://www.alt.macnica.co.jp/ 技術情報サイト アルティマ技術データベース http://www.altima.jp/members/ http://www.elsena.co.jp

 4. 本資料で取り扱っている回路、技術、プログラムに関して運用した結果の影響については、責任を負いかねますのであらかじめご了承ください。

 5. 本資料は製品を利用する際の補助的な資料です。製品をご使用になる際は、各メーカ発行の英語版の資料もあわせてご利用ください。