

SoC Linux 道場【其ノ六】 カスタム・ドライバの作成とコンパイル(その2)

Ver.13.1

2017年8月 Rev.3

ELSENA,Inc.

SoC Linux 道場【其ノ六】

カスタム・ドライバの作成とコンパイル(その2)

<u>目次</u>

1. <u>はじめに</u>	3
2. <u>カスタム・ドライバの作成とコンパイル(その 2)</u>	4
2-1. GPIO(LED)ドライバの作成	4
2-2. Helio のリファレンス・デザインの入手と確認	11
2-3. カスタム・ドライバのコンパイルとロード	. 16
2-4. Quartus II Programmer による .sof ファイルのプログラム	20
2-5. デバイス・ファイルの作成とドライバ・アクセス	. 24
2-6. LED の CGI 制御	. 26
改版履歴	33

1. はじめに

マクニカ Helio ボードには、LED(LED_PIO)やディップ・スイッチ(DIP_PIO)、プッシュ・ボタン(BTN_PIO) などを含む基本的なリファレンス・デザインが用意されています。

今回は、このリファレンス・デザイン内の LED を制御するカスタム・ドライバを作成してコンパイルします。

Helio ボードに NFS 経由で転送してから実行し、作成したドライバによる LED アクセス状態を確認して みます。

尚、この資料の説明で使用している主な開発環境は以下の通りです。

項番	項目	内容
1	ホスト OS	Microsoft [®] Windows [®] 7 Professional sp1 日本語版(64 bit)
2	ゲスト OS	Vine Linux 6.5 x86_64
		この資料では、Linux® 開発境境として、Vine Linux ティストリヒューションを使用します。
		詳細については、 <u>SoC Linux 道場【其ノ弐】</u> を参照ください。
3	仮想 OS	OS を仮想的に実行するための環境です。
	実行環境	この説明では、「VMware Player for Windows」と呼ばれるフリーウェア・ソフトを使用しています。
		詳細については、 <u>SoC Linux 道場【其ノ弐】</u> を参照ください。
4	クロス・コン	ターゲット(Helio)向けの実行イメージを生成するためのコンパイラです。
	パイラ	この説明では、Linaro から提供されている 32-bit ARMv7 Cortex-A 向け Linux GNU クロス・ ツールチェーンを使用しています。
		詳細については、 <u>SoC Linux 道場【其ノ参】</u> を参照ください。
5	thttpd	組み込み機器では比較的使用されている Web サーバ・ソフトです。
		「2-6. LED の CGI 制御」を実行するために必要となります。
		詳細については、 <u>SoC Linux 道場【其ノ四】</u> を参照ください。
6	アルテラ	アルテラ FPGA のハードウェアを開発するためのツールです。
	Quartus [®] II	本説明書では、Quartus II バージョン v13.1 を使用しています。
		■ Quartus II 開発ソフトウェア
		https://www.altera.co.jp/products/design-software/fpga-design/quartus-ii/overview.html
7	Helio	動作確認でターゲット・ボードとして使用する、
	ボード	アルテラ Cyclone® V SoC を搭載したマクニカ Helio ボードです。
		Helio には複数のリビジョンが存在しますが、この資料では Rev1.2 または Rev1.3 を使用して 動作確認を行っています。
		■ Halia ぜービ Boyl 2
		http://www.rocketboards.org/foswiki/Documentation/HelioResourcesForRev12
		■ Helio ボード Rev1 3
		http://www.rocketboards.org/foswiki/Documentation/HelioResourcesForRev13

【表 1.1】この資料の説明で使用している主な開発環境

2. カスタム・ドライバの作成とコンパイル(その2)

2-1. GPIO(LED)ドライバの作成

ここでは Helio 上にある LED をアクセスするドライバを作成します。

既に Helio には LED やディップ・スイッチ、プッシュ・ボタンを制御する、いわゆる GPIO のドライバがインストールされています。

しかし、ここは自分でデバイス・ドライバを作成できるようにならないと、カスタムのハードを追加した時に OS から制御することができません。

Linux[®]のドライバの種類としては、主に以下の3つのタイプが挙げられます。

- キャラクタ型
- ブロック型
- ネットワーク型

組み込み Linux の I/O 制御は、ほとんどがキャラクタ型デバイス・ドライバで行うことができます。

そこで、以下のような仕様で Helio の LED を制御するレガシーなキャラクタ型デバイス・ドライバを作成 します。

- 1 ビットずつのアクセスにする。
- ② シェル・コマンドの echo や cat のコマンドで制御できるようにする。
- ③ 出力デバイス(LED)に対して '1' で点灯、'0' で消灯とする(これ以外の英数字はエラーとする)。
- ④ 入力デバイス(ディップ・スイッチやプッシュ・スイッチ)は ON で '1'、OFF で '0' が返ってくるよう にする。
- ⑤ マイナー番号は以下の通りとする。
 4~7: LED 0~3
 8~11: ディップ・スイッチ 0~3
 - 12~14: プッシュ・スイッチ 0~2
- ⑥ 今回は割り込みをサポートしない。

このような仕様で作成したキャラクタ型の GPIO デバイス・ドライバのソース・コード(ファイル名: helio_gpio.c)を【リスト 2-1.1】に示します。

ソース・コードは Leafpad エディタ等を使用して一から書くこともできますが、大変なので別途記述済の helio_gpio.c ソース・コードを用意しました。

「2-3. カスタム・ドライバのコンパイルとロード」でコンパイルする際は、記述済み helio_gpio.c ソース・ コードをダウンロードして、<u>SoC Linux 道場【其ノ弐】</u>で説明した Samba サーバ経由で、Windows から Vine Linux のホーム・ディレクトリ(/home/tori)にコピーしてご利用ください。


```
// キャラクタ・デバイスの GPIO デバイス・ドライバ(cdev)
#define SUCCESS 0
#define NODE_NAME "char_drv"
#define MY_BUFF_SIZE 4096
#define MAP_SIZE
                             (0x20000)
#define MAP_BASE_ADDR
                             (0xFF200000) //lwAxiMaster Base Addr
#define LED_PIO_BASE
                             (0x10040)
#define DIP_PI0_BASE
                             (0x10080)
                                                                       アドレス定義
#define BTN_PI0_BASE
                             (0x100C0)
#define LED_PIO_DATA_OFFSET
                             (0x0)
#define DIP_PIO_DATA_OFFSET
                             (0x0)
#define BTN_PI0_DATA_OFFSET
                             (0x0)
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/gpio.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/moduleparam.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/ioctl.h>
#include <linux/cdev.h>
#include <linux/string.h>
#include <linux/list.h>
#include <linux/gpio.h>
MODULE_LICENSE ("Dual BSD/GPL");
static int major_num = 0;
static int minor_num = 16;
static struct cdev char_cdev;
#define MY_BUF_SIZE 1024
static unsigned char k_buf[MY_BUF_SIZE];
static int pos;
static int read_count = 0;
(次ページへ続く)
```



```
ALTIMA
           (前ページからの続き)
           static unsigned long gpio_table [] = {
              0,
              MAP_BASE_ADDR + LED_PIO_BASE + LED_PIO_DATA_OFFSET,
             MAP_BASE_ADDR + DIP_PIO_BASE + DIP_PIO_DATA_OFFSET,
             MAP_BASE_ADDR + BTN_PIO_BASE + BTN_PIO_DATA_OFFSET
           };
           typedef struct my_buff {
                   int bit;
              int mode;
              void *cookie;
           } GPIO_BUFF;
                                          open 関数
           static int char_open (struct inode *inode, struct file *filp)
           ł
              int minor = MINOR(inode->i_rdev);
              int bit = minor & 0x0F;
              int mode = (minor \& 0x08)? 0 : 1;
              void *cookie = ioremap(gpio_table[bit>>2], MAP_SIZE);
              GPI0_BUFF *GpioBuff;
              if(bit < 4 || bit > 15) {
                printk("Illegal minor number! MINOR Number = %d¥n", minor);
                return -EINVAL;
              }
              GpioBuff = (GPI0_BUFF *)kmalloc (sizeof(GPI0_BUFF), GFP_KERNEL);
              GpioBuff -> bit = bit;
              GpioBuff \rightarrow mode = mode;
              GpioBuff -> cookie = cookie;
              filp->private_data = GpioBuff;
              printk ("----- This is the Open Function -----¥n");
              printk ("Node NAME: %s:¥n", NODE_NAME);
              printk ("MAJOR Number = %d, MINOR Number = %d¥n",
                  MAJOR (inode->i_rdev), minor);
              printk ("Open device successfully: %s:\u00e4n\u00e4n\u00e4n, NODE_NAME);
              printk ("¥n");
              return SUCCESS;
           }
            (次ページへ続く)
```

```
ALTIMA
           (前ページからの続き)
                                        close 関数
           static int char_release (struct inode *inode, struct file *filp)
           ł
             GPI0_BUFF *GpioBuff = (GPI0_BUFF *)filp->private_data;
             kfree(GpioBuff);
             printk ("----- This is the Close Function -----¥n");
             printk ("Closing device: %s:¥n¥n", NODE_NAME);
             printk ("¥n");
             read_count = 0;
             return SUCCESS;
           }
                                     read 関数
           ssize_t char_read (struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
           {
             volatile unsigned int mode_port;
             unsigned int port_data = 0;
             void *cookie;
             char read_buff[2] = {'0', '¥n'};
             GPI0_BUFF *GpioBuff = (GPI0_BUFF *)filp -> private_data;
             int ret, bit;
                   if (read_count) {
                           return 0;
                   }
             mode_port = GpioBuff -> mode;
             if (mode_port == 1) {
               printk("This GPIO is Output!! No use read func. ¥n");
               return -EFAULT;
             }
             printk ("----- This is the READ function -----¥n");
             GpioBuff = filp->private_data;
             bit = GpioBuff -> bit;
             printk("bit=%d¥n", bit);
             cookie = GpioBuff -> cookie;
             port_data = readl(cookie);
             if ((~port_data & (0x00000001 << (bit & 0x03))))
               read_buff[0] = '1';
             else
               read_buff[0] = '0';
           (次ページへ続く)
```

```
ALTIMA
           (前ページからの続き)
             if (copy_to_user(buf, read_buff, count)) {
               printk("Copy_to_user Error!!¥n");
               return -EFAULT;
             }
                  printk ("¥n");
             ret = 2;
                  read_count++;
                  return ret;
           }
                                     write 関数
           ssize_t char_write (struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
           {
             volatile unsigned int mode_port;
             unsigned int value;
             void *cookie;
             GPI0_BUFF *GpioBuff = (GPI0_BUFF *)filp -> private_data;
             int bit;
                  mode_port = GpioBuff -> mode;
                   if (mode_port == 0) {
                           printk("This GPIO is Input!! No use write func. ¥n");
                           return -EFAULT;
                   }
                   printk ("---- This is the WRITE function -----¥n");
                   if (copy_from_user(k_buf, buf, count)) {
                           printk( "copy_from_user failed¥n");
                           return -EFAULT;
                   }
                   printk ("¥n");
             if (*k_buf != '0' && *k_buf != '1') {
               printk("k_buf is bad charctor!! k_buf is %s¥n", k_buf);
               return -EFAULT;
             }
           (次ページへ続く)
```

```
ALTIMA
           (前ページからの続き)
                   bit = GpioBuff -> bit;
             cookie = GpioBuff -> cookie;
                   value = readl(cookie);
             if (!(*k_buf - 0x30))
                value = value | (0x00000001 << (bit - 4));
             else
                value = value & (0x00000001 \iff (bit - 4));
                   writel( value, cookie);
                   pos = count;
                   printk("k_buf is %s pos = %d¥n", k_buf, pos);
                   return count;
           }
           struct file_operations char_fops = {
             . read = char_read,
             .write = char_write,
             . open = char_open,
             .release = char_release
           };
           static int char_init_module(void)
           {
             dev_t dev = MKDEV(major_num, 0);
             int major_num_ret;
             int cdev_ret = 0;
           //major_num_ret = register_chrdev (major_num, NODE_NAME, &char_fops);
             major_num_ret = alloc_chrdev_region(&dev, 0, minor_num, NODE_NAME);
             if (major_num_ret < 0) {</pre>
               printk ("Failed chrdev region %d¥n", major_num_ret);
               unregister_chrdev_region(dev, minor_num);
               return major_num_ret;
             }
           //if (major_num_ret) {
             major_num = major_num_ret = MAJOR(dev);
           //}
             cdev_init(&char_cdev, &char_fops);
             char_cdev.owner = THIS_MODULE;
             cdev_ret = cdev_add(&char_cdev, MKDEV(major_num, 0), minor_num);
             if (cdev_ret < 0) {
               printk ("Failed cdev add %d¥n", cdev_ret);
               cdev_del(&char_cdev);
               return cdev_ret;
             }
           (次ページへ続く)
```

(前ページからの続き) printk ("Device registered successfully, Major No. = %d¥n", major_num): return 0; } static void char_exit_module (void) { //unregister_chrdev (major_num, NODE_NAME): dev_t dev = MKDEV(major_num, 0); cdev_del(&char_cdev); unregister_chrdev_region(dev, minor_num); printk ("Device unregistered successfully, Major No. = %d¥n", major_num); } module_init(char_init_module); module_exit(char_exit_module);

【リスト 2-1.1】キャラクタ型 GPIO ドライバ・ソース・コード(ファイル名:helio_gpio.c)の内容

2-2. Helio のリファレンス・デザインの入手と確認

ALTIMA

今回の Helio 用デバイス・ドライバのポイントとしては、LED(LED_PIO_BASE)やディップ・スイッチ (DIP_PIO_BASE)、プッシュ・ボタン(BTN_PIO_BASE)のベース・アドレスです。

このアドレスは、Helio のハードウェア・リファレンス・デザインを Quarus II から Qsys を立ち上げて確認 することができます。

ここでは、Helio 向けのハードウェア・リファレンス・デザインをダウンロードして、その内容を確認します。

(1) 下記の Helio のページに行きます。

http://www.rocketboards.org/foswiki/Documentation/MacnicaHelioSoCEvaluationKit

(2) ご使用の Helio のボード・リビジョンを確認します。ボード・リビジョンは下図の赤枠の位置に印刷されています(この例では、Rev.1.3 を使用)。

【図 2-2.1】Helio のボード・リビジョン表記の確認

(3) 確認したボード・リビジョンに合ったリンクを選択します(この例では、Rev.1.3 を選択)。

Board Specific Resources:

Schematic ,BOM, Reference Manual, Reference Designs, etc

Board Rev.	Download Link	Note	Helio のボード・リビジョンに合った リンクをクリック (この例では、Rev.1.3 を選択)
Helio Board Rev.1.3	Helio Resources for Rev.1.2	5CSXF	C6C6U23C8NES
Helio Board Rev.1.4	Helio Resources for Rev.1.4	5CSXF	C5C6U23C7N

【図 2-2.2】Helio のボード・リビジョン別リンク

(4) 移動したページからハードウェア・リファレンス・デザインのダウンロード・リンクをクリックして、ダウンロード保存します(この例では、Quartus II 13.1 向けの helio_ghrd_v13.1.zip を選択)。

Category	ltem	Rev.	Download	Note
Documentation	Getting Started	1.3	Helio_Getting_Started_1.3.pdf	
	Reference Manual	1.2	Helio_reference_manual_v1.2.pdf	
Board References	Schematic	1.31	helio_board_SCH_v1.31.pdf	
	Bill of Materials	1.31	helio_board_BOM_v1.31.xls	
	PWB data	1.3	PWB_data_v1.3.zip	
Reference Materials	HW Reference Designs	v14.0	helio_ghrd_5csxc6es_v14.0.zip	Quartus II v14.0
	HW Reference Designs	v13.1	helio ghrd v13.1.zip	Quartus II v13.1

Helio Release Contents for Rev.1.3:

ALTIMA

ハードウェア・リファレンス・デザインのダウンロード・リンクをクリックして、 ダウンロード保存します (この例では、Quartus II 13.1 向けの helio_ghrd_v13.1.zip を選択)

【図 2-2.3】 リファレンス・デザインの入手

- (5) ダウンロードが完了したら、Windows 上で任意のフォルダ(この例では C:¥Temp¥Helio の下) に解 凍します。
- (6) PC のデスクトップにある Quartus II のアイコンをダブルクリックして、Quartus II を起動します。

【図 2-2.4】Quartus II の起動

(7) Quartus II の File メニュー ⇒ Open Project... を選択して、解凍しておいたリファレンス・デザイン内の helio_ghrd.qpf ファイルを選択し、[開く]をクリックしてプロジェクトを Open します。

File	Edit View Project	Assignments	Proces
	New	Ctrl+N	
2	Open	Ctrl+O	
	Close	Ctrl+F4	
阖	New Project Wizard		
1	Open Project	Ctrl+J	

【図 2-2.5】File メニュー ⇒ Open Project... を選択

6	Open Project							
(🌀 🔵 🗢 📗 « Temp 🕨 Hel	io ▶ helio_ghrd_v13.1 ▶	 ✓ helio_ghrd_v13.10 	検索・				
	整理 ▼ 新しいフォルダー							
	퉬 Intel 🔷 🔺	名前	更新日時	種類				
	iverilog	퉬 .qsys_edit	2014/05/31 16:03	ファイル フォ				
	MSOCache	퉬 hc_output	2014/05/31 16:03	ファイル フォ				
	PEMicro	鷆 hps_isw_handoff	2014/05/31 16:03	ファイル フォ				
	퉬 PerfLogs	鷆 ip	2014/05/31 16:03	ファイル フォ				
	퉬 Program Files	퉬 output_files	2014/05/31 16:03	ファイル フォ				
1]] ProgramData 🚽	soc_system	2014/05/31 16:03	ファイル フォ				
	symbols =	software	2014/05/31 16:03	ファイル フォ				
	System Volume Inf	🛐 helio_ghrd.qpf	2014/01/17 16:06	QPF ファイル				
1	Temp							
ľ	tmp							
	training -	4						
	a craining 🔍 🕈			, r				
	ファイル名	(<u>N</u>): helio_ghrd.qpf	 Quartus II Project Fi 	le (*.qp 👻				
	開く(の) マキャンセル							

【図 2-2.6】リファレンス・デザインのプロジェクトのオープン

(8) プロジェクトが開いたら、Qurtus II の Tools メニュー ⇒ Qsys を選択、または、Qsys アイコン をクリックして、Qsys を立ち上げます。

【図 2-2.7】Qsys の起動

または

(9) 次に Qsys のプロジェクト・ファイル(ここでは soc_system.qsys)を開きます。

🚣 開く		×
参照:	🜗 helio_ghrd_v13.1 🔹 🍺 📂 🖽 📾	
よび使った項 最近使った項 デスクトップ マイドキュメント コンピューター	<pre>.qsys_editdsys_editdsys_editds</pre>	
(<u>)</u> ネットワーク	ファイル名: soc_system.gsys ファイルタイプ: Any System Files (*.gsys, *.sopc) - 取消	0) íL

【図 2-2.8】 Qsys のプロジェクト・ファイルのオープン

(10) Qsys が起動したら Address Map タブをクリックします。

System Contents 🛛 📷 Addres	s Map 🛛 🛛 Project Settings 🖾 Ck	ocks 🛛	-
	hps_0h2f_axi_master	hps_0h2f_lw_axi_master	fpga_only_master.master
hps_0.f2h_axi_slave			
led_pios1		0x0001_0040 - 0x0001_004f	0x0001_0040 - 0x0001_004f
dipsw_pio.s1		0x0001_0080 - 0x0001_008f	0x0001_0080 - 0x0001_008f
button_pio.s1		0x0001_00c0 - 0x0001_00cf	0x0001_00c0 - 0x0001_00cf
onchip_memory2_0.s1	0x0000_0000 - 0x0000_ffff		0x0000_0000 - 0x0000_ffff
intr_capturer_0.avalon_slave_0			0×0003_0000 - 0×0003_0007
jtag_uart.avalon_jtag_slave		0×0002_0000 - 0×0002_0007	0x0002_0000 - 0x0002_0007
sysid_qsys.control_slave		0×0001_0000 - 0×0001_0007	0×0001_0000 - 0×0001_0007

【図 2-2.9】 Address Map タブのクリック

SoC Linux 道場【其ノ六】 カスタム・ドライバの作成とコンパイル(その2)

ELSENA

(11) 現れた画面の LED と ディップ・スイッチ、ボタン・スイッチ のアドレスを見てみると以下のようになっています。

led_pios1	0×0001_0040 - 0×0001_004f
dipsw_pio.s1	0x0001_0080 - 0x0001_008f
button_pio.s1	0x0001_00c0 - 0x0001_00cf

【図 2-2.10】 LED、ディップ・スイッチ、ボタン・スイッチのアドレス

この先頭アドレスを【リスト 2-1.1】の中で指定しています。

従って、今後カスタムの PIO などを追加して GPIO ドライバを作成する際には、単純な動作であればこのアドレスを追加すれば基本的に OK です。

また、ベース・アドレスの下位 8 ビットがそれぞれ、

LED : 0140 ディップ・スイッチ : 0180 ボタン・スイッチ : 0100

で、それぞれ 4 ビット、4 ビット、3 ビットの長さなのでマイナー番号の割り当てを、

LED	:	4~7
ディップ・スイッチ	:	8~11
ボタン・スイッチ	:	12~14

としています。

また、AXI のマスタのベース・アドレスは 0xFF200000 になっていますので、それもドライバの中で定義しています。

Helio に関わるところは以上です。

【参考】

上記の "マイナー番号" は、後述「2-5. デバイス・ファイルの作成とドライバ・アクセス」において、 mknod コマンドでデバイス・ノード(デバイス・ファイル)を作成する際に使用しています。 mknod コマンドでは、引数の一部として "メジャー番号" と "マイナー番号" を与えます。

"メジャー番号"は、どのデバイス・ドライバ・エントリを使用すべきかをカーネルに示します。

insmod コマンドでドライバのカーネル・モジュール(helio_gpio.ko)をロードする際に "メジャー番号" が返されます。

"マイナー番号"は、デバイスのどのサブ・ユニットがデバイス・ノード(デバイス・ファイル)に対応す るのかをカーネルに示します。また、ドライバ内でも識別されます。

例えば、Helio の LED として led_pio がデバイスとすれば、その中の各 LED に対応した 4 つ のビットがサブ・ユニット(マイナー番号)に対応し、ドライバ内で使用されます。

2-3. カスタム・ドライバのコンパイルとロード

【リスト 2-1.1】のキャラクタ型 GPIO ドライバ・ソース・コード helio_gpio.c が完成したら、コンパイルして Helio 上で動かしてみます。

(1) <u>SoC Linux 道場【其ノ五】</u>の「3. カスタム・ドライバの作成とコンパイル(その1)」で作成した、 Hello ドライバ用の Makefile を今回のキャラクタ型 GPIO ドライバ用に書き直してコンパイルしま す。

Linux 上の一般ユーザ(この例では tori)のホーム・ディレクトリ(/home/tori)から以下のコマンドを実行して、Leafpad で Makefile を開いて、下記の【リスト 2-3.1】のように修正します。

<u>SoC Linux</u> 道場【其ノ五】で Makefile を作成していない場合は、下記【リスト 2-3.1】の内容で Makefile を新規に作成してください。

[tori@Vine65 ~]\$ leafpad Makefile

【リスト 2-3.1】 キャラクタ型 GPIO ドライバ用 Makefile の内容

作成が終了したら、Leafpad で Makefile ファイルを保存して閉じます。

【注記】

- ① Makefile の書式として、コマンド行の先頭はスペースではなく Tab を入力してください。 スペースではコンパイルがエラーとなるので注意してください。
- ②「leafpad: ディスプレイをオープンできません:」というエラーが出る場合は「端末」を一旦 終了し、再度「端末」を起動してから、上記の leafpad コマンドを再度実行してください。

(2) 以下の make コマンドでキャラクタ型 GPIO ドライバをコンパイルします。 helio_gpio.c と Makefile を作成したディレクトリで実行します(この例では、/home/tori)。

[tori@Vine65 ~]\$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihfmake -C /home/tori/linux-socfpga M=/home/tori modules make[1]: ディレクトリ `/home/tori/linux-socfpga' に入ります CC [M] /home/tori/helio_gpio.o Building modules, stage 2. MODPOST 1 modules CC /home/tori/helio_gpio.mod.o LD [M] /home/tori/helio_gpio.ko make[1]: ディレクトリ `/home/tori/linux-socfpga' から出ます

【注記】

<u>SoC Linux</u> 道場【其ノ参】で説明した、クロス・コンパイラがインストールされて、パスが設定されていて使用できることを前提としています。

上記の make コマンドを実行してエラーが出るようであれば、 which arm-linux-gnueabihf-gcc コマンドを実行して、クロス・コンパイラのパスが通っている か確認してください。 クロス・コンパイラのパスが正しく通っていない場合は、再度 <u>SoC Linux 道場 【其ノ参】</u>を参照し て必要な設定を行ってください。 または、次のコマンドを実行してクロス・コンパイラのパスを設定してください。

[tori@Vine65 ~]\$ export PATH=/opt/gcc-linaro-4.9.4-2017.01-x86_64_arm-linux-gnueabihf/bin/:\$PATH

(3) Helio とホスト PC を下図のように接続します。

【図 2-3.1】 PC と Helio の接続図(全体)

- ① Helio の UART コネクタとホスト PC の USB ポートをミニ USB ケーブルで接続します。
- ② Helio の USB-Blaster[™] II コネクタとホスト PC の USB ポートをミニ USB ケーブルで接続します。
- ③ Helio の ETHERNET コネクタとホスト PC のイーサーネット・ポートをイーサーネット・ケーブ ルで接続します。
- ④ Helio の microSD カード・スロットに、SoC Linux 道場【其ノ壱】で作成した Helio 用 Linux の microSD カードを取り付けます。
- (4) Helio の 電源を入れて Linux が起動したら、ターゲット側(Helio) で以下のように root でログイ ンして、udhcpc コマンドを実行して、DHCP サーバから Helio に IP アドレスが付与されるようにし ます(下記の例では、192.168.1.238 が付与されています)。

【注記】

<u>SoC Linux</u> 道場【其ノ弐】で説明した DHCP サーバが設定されていて、使用できることを前提としています。

```
socfpga login: root
root@socfpga:~# udhcpc
udhcpc (v1.20.2) started
Sending discover...
Sending select for 192.168.1.238...
Lease of 192.168.1.238 obtained, lease time 21600
/etc/udhcpc.d/50default: Adding DNS 192.168.1.1
```


 (5) ドライバのカーネル・モジュール(helio_gpio.ko)が生成されているはずなので、それを NFS 経由で Helio 上に運ぶための準備として、ターゲット側(Helio)からホスト側(Vine Linux)のマウント先 /opt/Helio に helio_gpio.ko をコピーしておきます。

<mark>ホスト側(Vine Linux)</mark>から以下のコマンドを実行します。

[tori@Vine65 ~]\$ cp helio_gpio.ko /opt/Helio

2-4. Quartus II Programmer による .sof ファイルのプログラム

すでにダウンロードして解凍した Helio のファレンス・デザイン内の output_files フォルダの下に、 helio_ghrd.sof ファイルがあります。

🕽 🕞 🗢 📔 « Temp 🕨 Helio 🖡 helio_ghrd_v13.1 🕨 output_files 🛛 🗸 😽 🖉 output_filesの検索					
整理 ▼ 📄 開く 新しいフォルダ	_			:==	- 🗌 🔞
🌗 Helio	*	名前	更新日時	種類	サイズ
퉬 Design		helio abrd.asm.rpt	2014/02/04 10:33	RPT ファイル	8 KB
🐌 GNU Application		helio ghrd.cdf	2014/02/04 10:37	CDF ファイル	1 KB
🎳 helio_ghrd_v13.1		helio_ghrd.done	2014/02/04 10:34	DONE ファイル	1 KB
<u> .q<i>s</i>ys_</u> edit		helio_ghrd.fit.rpt	2014/02/04 10:33	RPT ファイル	1,606 KB
🚹 db		helio_ghrd.fit.smsg	2014/02/04 10:33	SMSG ファイル	1 KB
hc output		📄 helio_ghrd.fit.summary	2014/02/04 10:33	SUMMARY ファ	1 KB
hns isw handoff		📄 helio_ghrd.flow.rpt	2014/02/04 10:34	RPT ファイル	48 KB
		📄 helio_ghrd. jdi	2014/02/04 10:33	JDI ファイル	33 KB
up 👘		📄 helio_ghrd.jic	2014/02/04 11:18	JIC ファイル	32,769 KB
<pre>output_files</pre>		📄 helio_ghrd.map	2014/02/04 11:18	MAP ファイル	1 KB
🎳 soc_system		📄 helio_ghrd.map.rpt	2014/02/04 10:31	RPT ファイル	3,379 KB
鷆 software	_	📄 helio_ghrd.map.smsg	2014/02/04 10:30	SMSG ファイル	4 KB
퉬 Image	Ξ	📄 helio_ghrd.map.summary	2014/02/04 10:31	SUMMARY ファ	1 KB
퉲 Kernel		helio_ghrd.pin	2014/02/04 10:32	PIN ファイル	79 KB
📕 Manual		helio_ghrd.sof	2014/02/04 10:33	SOF ファイル	7,206 KB
Software		helio_ghrd.sta.rpt	2014/02/04 10:34	RPT ファイル	12,020 KB
helio abrd v13.1 zin		📄 helio_ghrd.sta.summary	2014/02/04 10:34	SUMMARY ファ…	11 KB
helio_ghrd.sof 更新日時: 2014/02/04 10:33 作成日時: 2015/02/04 09:25 SOF ファイル サイズ: 7.03 MB					

【図 2-4.1】output_files フォルダの下にある helio_ghrd.sof ファイル

この .sof ファイルを Helio 上の SoC FPGA にプログラムすることで、FPGA がコンフィギュレーションされて、Helio の LED やスイッチ類が使用できるようになります。

以降に、Quartus II Programmer による .sof ファイルのプログラム手順を説明します。

(1) PC のデスクトップしある Quartus II のアイコンをダブルクリックして、Quartus II を起動します。

※ 2-2. 項で 既に Quartus II が起動済みである場合は、この手順はスキップしてください。

【図 2-4.2】Quartus II の起動

(2) Quartus II の Tools メニュー ⇒ Programmer を選択、または Programmer アイコン [▶] をクリックし、Programmer を起動します。

💱 Quartus II 64-Bit		
File Edit View Project Assignments Processing	Tool	s Window Help 💎
i 🗋 💕 🖉 🧶 🖓 🕼 🖓 (M i		Run Simulation Tool
Project Navigator	ς.	Launch Simulation Library Compiler
Compilation Hierarchy	5	Launch Design Space Explorer
i	Ō	TimeQuest Timing Analyzer
		Advisors •
	ò	Chip Planner
	æ	Design Partition Planner
		Netlist Viewers
	æ	SignalTap II Logic Analyzer
		In-System Memory Content Editor
Hierarchy E Files Design Unics	_	Logic Analyzer Interface Editor
Tasks	01	In-System Sources and Probes Editor
Flow: HyperFlex Compilation		SignalProbe Pins
Task	•	Programmer

【図 2-4.3】 Programmer の起動

(3) Programmer 内にある [Hardware Setup...] ボタンをクリックし、Currently selected hardware のプルダ ウンリストから Helio を選択します。選択したら [Close] をクリックします。

👋 Quartus II 64-Bit Prog	grammer - [Chain1.co	f]				
File Edit View Process	ing Tools Window	Help 🐬				Search a
Hardware Setup) Hardware	Mode:	JTAG	•	Progress:	
	iow background program	ning (for Piez II and P				
Start	File	Device	Checksum	Usercode	Program/	Verify Bl
	w Hardware Setup					
Auto Detect	Hardware Settings	JTAG Settings		mming devices. T		
🔀 Delete	hardware setup app	lies only to the current	: programmer wi	indow.	nis programming	
Add File	Currently selected h	ardware: Helio [USI	3-1]			3
Change File	Available hardware	e items				
	Hardware		Server	Port	Add Hardware.	
Add Device	Helio		Local	USB-1	Remove Hardwa	are
L ^M Down						
						ose
🗙 AII 🙆 🛆 🛆						

【図 2-4.4】 Hardware Setup

(4) [Auto Detect] ボタンをクリックし、ボード上の JTAG チェインに接続されている FPGA を検出します。
 Select Device ウィンドウが現れたら "5CSXFC6C6ES"を選択し [OK] をクリックします。

【図 2-4.5】デバイスの選択

(5) 5CSXFC6C6ES 上をクリックしてハイライトし [Change File] をクリックします。

👋 Quartus II 64-Bit	t Prog ramm <mark>er</mark> - [Ch	ain1.cdf]*			
<u>File E</u> dit <u>V</u> iew P	<u>r</u> ocessing <u>T</u> ools <u>W</u> i	ndow <u>H</u> elp 🐬			
🔔 Hardware Setup.	Helio [USB-1] P to allow background p	Mode: rogramming (for MAX II and №	JTAG 1AX V devices)	•	Progress:
	1				
Start	File	Device	Checksum	Usercode	Program/ Configure
- Stop	<none></none>	SOCVHPS	00000000	<none></none>	
Stop	<none></none>	5CSXFC6C6ES	00000000	<none></none>	
Auto Detect					
🛛 🔀 Delete	•				
Add File					
🎉 Change File					

【図 2-4.6】 [Change File] をクリック

ALTIMA

🤟 Select New Programming File
Look in: 🚺 D:\Temp\Helio\helio_ghrd_v13.1\output_files 🔹 🥥 🕥 📑 📰 🔳
My Computer 11149 My Computer helio_ghrd.sof
File name: helio_ghrd.sof
Files of type: Programming Files (*.sof *.pof *.jam *.jbc *.ekp *.jic) Cancel

【図 2-4.7】 プログラミング・ファイルの選択

(7) Program/Configure にチェックを入れた後、[Start] ボタンをクリックしてコンフィギュレーションを行いま す。Progress バーに「100% (Successful)」と表示されればプログラミングは完了です。

👾 Programmer - D:/Temp/Helio/helio_ghrd_v13.1/helio_ghrd - helio_ghrd - [output_files/helio_ghrd.cdf]* 🛛 🕞 💷 💌									
Eile Edit View Processing Tools Window Help 🐬 Search altera.com 🚱									
Hardware S	Hardware Setup Helio [USB-1] Mode: JTAG Progress: 100% (Successful) Enable real-time ISP to allow background programming (for MAX II and MAX V devices)								
Start	-;	File	Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine
Stop		<none></none>	SOCVHPS	00000000	<none></none>				
		output_files/helio_ghrd.sof	5CSXFC6C6U23C8ES	0263F018	0263F018				
Auto Dete	ct					_			
🛛 🔀 Delete		•							Þ

【図 2-4.8】 リファレンス・デザインによるコンフィギュレーションの実行

ALTIMA

2-5. デバイス・ファイルの作成とドライバ・アクセス

(1) 前述の「2-3. カスタム・ドライバのコンパイルとロード」の (5) で、コンパイルしたドライバのカーネ ル・モジュール (helio_gpio.ko)を /opt/Helio にコピーしました。

Helio の SD カードの /bin の下にもともと入っている busybox を使って、ホスト側(Vine Linux)の /opt/Helio を /mount_dir にマウントします。ターゲット側(Helio) で以下のコマンドを実行します。

【注記】

🛆 ALTIMA 🗖

SoC Linux 道場【其ノ弐】で説明した NFS サーバが使用できることを前提としています。

```
root@socfpga:~# mkdir /mount_dir
root@socfpga:~# busybox mount -t nfs -o nolock 192.168.1.2:/opt/Helio /mount_dir
```

(2) ターゲット側(Helio) で以下の insmod コマンドを実行して、すでに作成してマウントされているドライ バをロードします。

root@socfpga:~# insmod /mount_dir/helio_gpio.ko
Device registered successfully, Major No. = 252

(3) 上記のコマンド出力では、メジャー番号が 252 を獲得したことを示していますので、以下の mknod コマンドでデバイス・ノード(デバイス・ファイル)を作成します。

```
      root@socfpga:~# mknod
      -m
      666
      led0
      c
      252
      4

      root@socfpga:~# mknod
      -m
      666
      led1
      c
      252
      5

      root@socfpga:~# mknod
      -m
      666
      led2
      c
      252
      6

      root@socfpga:~# mknod
      -m
      666
      led3
      c
      252
      7

      root@socfpga:~# mknod
      -m
      666
      dip0
      c
      252
      8

      root@socfpga:~# mknod
      -m
      666
      dip1
      c
      252
      9

      root@socfpga:~# mknod
      -m
      666
      dip2
      c
      252
      10

      root@socfpga:~# mknod
      -m
      666
      dip3
      c
      252
      11

      root@socfpga:~# mknod
      -m
      666
      btn0
      c
      252
      12

      root@socfpga:~# mknod
      -m
      666
      btn0
      c
      252
      13

      root@socfpga:~# mknod
      -m
      666
      btn1
      c
      252
      13

      root@socfpga:~# mknod
      -m
      666
      btn1
      c
      252
      14
```

(4) 次にシェルから LED のアクセスを行います。以下のように実行して LED を点灯・消灯させます。

(5) 前の (4) で echo コマンドを実行すると、helio_gpio.c ドライバの中で printk で出力しているメッセージが、下図のように Helio 側 Linux のコンソールに表示されます。

📴 COM4:115200baud – Tera Term VT	
ファイル(F) 編集(E) 設定(S) コントロール(O) ウンドウ(W)	ヘルプ(H)
root@socfpga:~# echo 1 > led2 This is the Open Function Node NAME: char_drv: MAJOR Number = 252, MINOR Number = 6 Open device successfully: char_drv:	
This is the WRITE function	
k_buf is 1 pos = 2 This is the Close Function Closing device: char_drv:	
root@socfpga:~# echo 1 > led3 This is the Open Function Node NAME: char_drv: MAJOR Number = 252, MINOR Number = 7 Open device successfully: char_drv:	
This is the WRITE function	
k_buf is 1 pos = 2 This is the Close Function Closing device: char_drv:	
root@socfpga:~#	

前の (4) のコマンド実行により LED が制御できていれば OK です。

2-6. LED の CGI 制御

次に LED 制御用の CGI プログラムを作成して、ブラウザから LED の制御を試してみます。

CGI は Common Gateway Interface(コモン・ゲートウェイ・インタフェース)の略で、ウェブ・サーバ上でユ ーザ・プログラムを動作させるための仕組みです。

(1) CGI プログラムのソース・コード(ファイル名: led.c)を次の【リスト 2-6.1】に示します。

ソース・コードは Leafpad エディタ等を使用して一から書くこともできますが、大変なので別途記述済の led.c ソース・コードを用意しました。

この記述済 led.c ソース・コードをダウンロードして、<u>SoC Linux 道場【其ノ弐】</u>で説明した Samba サーバ経由で、Windows から Vine Linux のホーム・ディレクトリ(/home/tori)にコピーしてご利用くだ さい。

```
#include <stdio.h>
 #include <string.h>
 #include <sys/types.h>
#include <sys/stat.h>
 #include <fcntl.h>
 #include <unistd.h>
 int main(int argc, char *argv[]) {
       int i;
       int led_fd[4];
      char *env;
      char buff[10];
static char *LED[] = {
      "led0",
      "led1",
      ″led2″.
      ″led3″
};
      printf("Content-type: text/html¥n¥n");
      printf("<html><body><big>LED control CGI sample</big>¥n");
      printf("<form action=\full "led.cgi\full" method=\full "get\full" \full fn");</pre>
       env = (char *)getenv("QUERY_STRING") ;
       if (env == NULL) env = "led";
 //printf("%s¥n", env);
      for (i = 0; i \le 3; i++) {
 //// strcpy(buff, "/tmp/");
             strcpy(buff, "/home/root/");
                                                                                                   open システム・コールを実行し、ファイル・ディスクリプタを取得
             strcat(buff, LED[i]);
             if ((led_fd[i] = open(buff, 0_WRONLY)) == -1) {
                          perror ("open:");
                          return 1;
             }
             printf("%s<input type=¥"checkbox¥" name=¥"%s¥" value=¥"on¥"", LED[i], LED[i]);
             if (strstr(env,LED[i])) {
                                                                                                               write システム・コールを実行
                   write (led_fd[i], "1", 1); <
                   printf(" checked>¥n");
            }
             else {
                   write (led_fd[i], "0", 1); <-----
                                                                                                               write システム・コールを実行
                   printf(">¥n");
            }
       }
       printf("<input type=\function submit\function value=\function value=\function submit\function value=\function value=\func
      printf("</form></body></html>¥n");
       return 0;
 }
```

【リスト 2-6.1】 LED 制御 CGI プログラム・ソース・コード(ファイル名:led.c)の内容

(2) ホスト側(Vine Linux) から以下のコマンドで、led.c のクロス・コンパイルを実行します。

[tori@Vine65 ~]\$ arm-linux-gnueabihf-gcc led.c -o led.cgi

(3) led.cgi が生成されているはずなので、それをNFS 経由で Helio 上に運ぶための準備として、ターゲット側(Helio)からホスト側(Vine Linux)のマウント先 /opt/Helio に led.cgi をコピーしておきます。

<mark>ホスト側(Vine Linux)</mark>から以下のコマンドを実行します。

[tori@Vine65 ~]\$ cp led.cgi /opt/Helio/

(4) Helio の SD カードの /bin の下にもともと入っている busybox を使って、ホスト側(Vine Linux)の /opt/Helio を /mount_dir にマウントします。
これにより、上記 (3) で /opt/Helio にコピーした led.cgi を Helio の /mount_dir に送ります。
また、CGI プログラムを実行するためには、SoC Linux 道場【其ノ四】で説明した thttpd という Web サーバ・ソフトを使用します。
SoC Linux 道場【其ノ四】の「2-2. thttpd のクロス・コンパイルとインストール」を一通り実施してい る場合は、thttpd のファイル(thttpd、thttpd.conf、index.html、printenv.cgi)が /opt/Helio に既にコピー されているはずなので、これらのファイルも Helio の /mount_dir に送られます。
ターゲット側(Helio)で以下のコマンドを実行します。

【注記】

- ※1. SoC Linux 道場【其ノ弐】で説明した、NFS サーバが使用できることを前提としています。
- ※2. thttpd のファイル(thttpd、thttpd.conf、index.html、printenv.cgi)が、ホスト側(Vine Linux)の /opt/Helio ディレクトリにコピーされていない場合は、SoC Linux 道場【其ノ四】の「2-2. thttpd のクロス・コンパイルとインストール」の 20 ページ (8) まで実行して thttpd のファイルを /opt/Helio ディレクトリにコピーしてから、これ以降のステップを実行してください。

root@socfpga:~‡	<pre># busybox mount</pre>	-t nfs -o nolock	<pre>x 192.168.1.2:/opt/Helio /mount_dir</pre>
root@socfpga:~‡	<pre># ls /mount_dir</pre>		
busybox	hello_driver.ko	printenv.cgi	toriumi.txt
busybox_command	index.html	thttpd	
helio_gpio.ko	led.cgi	thttpd.conf	

(5) <mark>ターゲット側(Helio)</mark> で thttpd の設定を行います。まず NFS 経由で見えている4つのファイル (thttpd、thttpd.conf、index.html、printenv.cgi)を root ディレクトリにコピーしておきます。

root@socfpga root@socfpga root@socfpga root@socfpga root@socfpga	a:~# cp /moun a:~# cp /moun a:~# cp /moun a:~# cp /moun a:~# ls	t_dir/tht t_dir/tht t_dir/ind t_dir/pri	tpd . ← tpd.conf . ex.html . ntenv.cgi .	━ 最後の「.」(ドット)を忘れないこと	
README	index.html	led1	led3	printenv.cgi thttpd.conf	
altera	ledO	led2	mount_dir	thttpd	

(6) ターゲット側(Helio) で以下のように必要なユーザやファイルを作成します。

root@socfpga:∼ # adduser httpd < Changing password for httpd	SoC Linux 道場【其ノ四】で実施済みであれば、 エラーが出ますが無視して問題ありません				
Enter the new password (minimum of 5, maximum	of 8 characters)				
Please use a combination of upper and lower ca	ise letters and numbers.				
Enter new password:					
Bad password: too simple.					
Warning: weak password (continuing). Re-enter new password: Password changed.	適当なパスワード(例えば、toriumi)を 入力します(非表示)				
root@socfpga:~# mkdir /home/httpd/html ← root@socfpga:~# mkdir /home/httpd/html/cgi	SoC Linux 道場【其ノ四】で実施済みであれば、 -bin く エラーが出ますが無視して問題ありません				
<pre>root@socfpga:~# cp index.html /home/httpd/</pre>	'html/				
<pre>root@socfpga:~# chmod 644 /home/httpd/html/index.html</pre>					
<pre>root@socfpga:~# cp printenv.cgi /home/httpd/html/cgi-bin</pre>					
<pre>root@socfpga:~# chmod 755 /home/httpd/html</pre>	/cgi-bin/printenv.cgi				

(7) ターゲット側(Helio) で led.cgi ファイルを /home/httpd/html/cgi-bin ディレクトリヘコピーしてから、
 chmod コマンドで実行権限を与えます。

root@socfpga:~# cp /mount_dir/led.cgi /home/httpd/html/cgi-bin root@socfpga:~# chmod 755 /home/httpd/html/cgi-bin/led.cgi

(8) ターゲット側(Helio) で thttpd を以下のコマンドで起動します。その後、ps コマンドでプロセスが 起動していることを確認します。

root@socfpga:	~# ./thttp	od -C thttpd.conf <		thttpd を起動		
root@soc+pga:	~# ps					
PID USER	VSZ STAT	COMMAND				
1 root	1312 S	init [5]				
2 root	O SW	[kthreadd]				
3 root	O SW	[ksoftirqd/0]				
(途中省略)					
704 httpd	2388 S	./thttpd -C thttpd.conf	\leftarrow	プロセスが起動し	ていることを確認	
705 root	1944 R	ps				
root@socfpga:	~#					

(9) <mark>ホスト側(Vine Linux)</mark> で Web ブラウザ(Firefox)を起動します。

😼 Vine65 - VMware Player (‡	非営利目的の使用のみ)
Player(P) v D v R	または、このアイコンをクリック
🔊 アプリケーション 場所	f システム 🔤 💽 🔤
💦 アクセサリ	
🌍 インターネット	> ↑↓ Avahi SSH サーバの検索
🦞 オフィス	▶ ↑↓ Avahi VNC サーバの検索
🏂 グラフィックス	> 😳 Ekiga ソフトフォン
실 ゲーム	▶ 💽 Fxウェブブラウザ (firefox)
サウンドとビデオ	> 💽 Fxウェブブラウザ (セーフモード)

【図 2-6.1】Web ブラウザ(Firefox)を起動

(10) 例えば DHCP サーバから付与された Helio の IP アドレスが「192.168.1.238」の場合は、

http://192.168.1.238:8080/cgi-bin/led.cgi

をURL に指定して、下図のようなブラウザが現れて、LED がアクセスできるようになります。

各 LED のチェック・ボックスに、チェックを入れて [submit] ボタンをクリックすると LED が点灯します。 チェックを外して [submit] ボタンをクリックすると LED が消灯します。

【注記】

LED 制御 CGIを実行する前には、前述の「2-5. デバイス・ファイルの作成とドライバ・アクセス」 の (2),(3) で実行した下記のコマンドによって、ドライバのロードとデバイス・ノード(デバイス・フ ァイル)の作成を行っておく必要があります。

root@socfpga:~#	insmoo	l /n	nount	t_dir,	/he	elio_	_gpio.ko
root@socfpga:~#	mknod	- m	666	led0	С	252	4
root@socfpga:~#	mknod	- m	666	led1	С	252	5
root@socfpga:~#	mknod	- m	666	led2	С	252	6
root@socfpga:~#	mknod	- m	666	led3	С	252	7

🔮 Fx ウェブブラウザ	
ファイル(<u>F</u>) 編集(<u>E</u>) 表示(<u>V</u>) 履歴(<u>S</u>) ブックマーク(<u>B</u>) ツール(<u>T</u>) ヘルプ(<u>H</u>)	
C http://192.168.1/cgi-bin/led.cgi	
	۹ 🖟 📥
LED control CGI sample	
led0 □ led1 □ led2 □ led3 □ submit	

【図 2-6.2】 LED 制御 CGI

もしうまく表示されない場合は、以下の項目を確認してください。

● <u>SoC Linux 道場【其ノ四】</u>の「2-2. thttpd のクロス・コンパイルとインストール」が一通り 実施されていて、printenv.cgi が正しく表示されるようにしてください。

この時点で正しく表示されない場合は、【其ノ四】 23 ページ (14) の ① ~ ④ などを確認して、printenv.cgi が正しく表示されることを確実にしてください。

またこれによって、thttpd のファイル(thttpd、thttpd.conf、index.html、printenv.cgi)が、ホスト **側(Vine Linux)の** /opt/Helio ディレクトリにコピーされていることを確認してください。

- CGI プログラムのソース・コード led.c の内容が正しいか?
- led.c が正しくクロス・コンパイルされているか?
- クロス・コンパイルした led.cgi を /opt/Helio にコピーしたか?
- busybox を使って、ホスト側(Vine Linux)の /opt/Helio を /mount_dir にマウントしたか?

上記が正しく行われていれば、再度 28 ページの (5) から実行してください。

次回の Soc Linux 道場【其ノ七】では、Helio ボードの FPGA 上にモーターに対して PWM 制御する ユーザ独自のハードウェアを追加して動作の確認を行います(Helio ボードの LED の様子で PWM 制御 できているかどうかを確かめます)。

改版履歴

Revision	年月	概要
1	2015年2月	新規作成
2	2015 年 3 月	誤記訂正 P.24 誤) mkdir mount dir ⇒ 正) mkdir /mount dir
0.1		
2.1	2015年3月	アルテラ社の Web サイトのリニューアルに伴う URL 変更
3	2017 年 8 月	 Sourcery CodeBench Lite Edition for ARM GNU/Linux の配布終了に 伴い、クロス・コンパイル環境として Linaro Toolchain を使用する説明 に変更
		② ゲスト OS を Vine Linux 6.2.1 i686 から Vine Linux 6.5 x86_64 に変 更

Linux は、Linus Torvalds 氏の日本およびその他の国における登録商標または商標です。

免責およびご利用上の注意 弊社より資料を入手されましたお客様におかれましては、下記の使用上の注意を一読いただいた上でご使用ください。 1. 本資料は非売品です。許可無く転売することや無断複製することを禁じます。 2. 本資料は予告なく変更することがあります。 3. 本資料の作成には万全を期していますが、万一ご不明な点や誤り、記載漏れなどお気づきの点がありましたら、本資料を入手されました下記代理店までご一報いただければ幸いです。 株式会社マクニカ アルティマ カンパニー https://www.altmacnica.co.jp/ 技術情報サイト アルティマ技術データベース http://www.altima.jp/members/ 株式会社エルセナ http://www.elsena.co.jp 技術情報サイト ETS http://www.elsena.co.jp/elspear/members/ http://www.elsena.co.jp 技術情報サイト ETS http://www.elsena.co.jp/elspear/members/ http://www.elsena.co.jp/ 技術情報サイト ETS 4. 本資料で取り扱っている回路、技術、プログラムに関して運用した結果の影響については、責任を負いかねますのであらかじめご了承ください。 5. 本資料は製品を利用する際の補助的な資料です。製品をご使用になる際は、各メーカ発行の英語版の資料もあわせてご利用ください。